MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqenlem2 Structured version   Unicode version

Theorem fseqenlem2 8195
Description: Lemma for fseqen 8197. (Contributed by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fseqenlem.a  |-  ( ph  ->  A  e.  V )
fseqenlem.b  |-  ( ph  ->  B  e.  A )
fseqenlem.f  |-  ( ph  ->  F : ( A  X.  A ) -1-1-onto-> A )
fseqenlem.g  |-  G  = seq𝜔 ( ( n  e.  _V ,  f  e.  _V  |->  ( x  e.  ( A  ^m  suc  n ) 
|->  ( ( f `  ( x  |`  n ) ) F ( x `
 n ) ) ) ) ,  { <.
(/) ,  B >. } )
fseqenlem.k  |-  K  =  ( y  e.  U_ k  e.  om  ( A  ^m  k )  |->  <. dom  y ,  ( ( G `  dom  y
) `  y ) >. )
Assertion
Ref Expression
fseqenlem2  |-  ( ph  ->  K : U_ k  e.  om  ( A  ^m  k ) -1-1-> ( om 
X.  A ) )
Distinct variable groups:    y, B    f, n, x, F    y,
k, G    f, k,
y, A, n, x    ph, k, n, x, y
Allowed substitution hints:    ph( f)    B( x, f, k, n)    F( y, k)    G( x, f, n)    K( x, y, f, k, n)    V( x, y, f, k, n)

Proof of Theorem fseqenlem2
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4175 . . . . 5  |-  ( y  e.  U_ k  e. 
om  ( A  ^m  k )  <->  E. k  e.  om  y  e.  ( A  ^m  k ) )
2 elmapi 7234 . . . . . . . . . 10  |-  ( y  e.  ( A  ^m  k )  ->  y : k --> A )
32ad2antll 728 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
y : k --> A )
4 fdm 5563 . . . . . . . . 9  |-  ( y : k --> A  ->  dom  y  =  k
)
53, 4syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  ->  dom  y  =  k
)
6 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
k  e.  om )
75, 6eqeltrd 2517 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  ->  dom  y  e.  om )
85fveq2d 5695 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( G `  dom  y )  =  ( G `  k ) )
98fveq1d 5693 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( ( G `  dom  y ) `  y
)  =  ( ( G `  k ) `
 y ) )
10 fseqenlem.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  V )
11 fseqenlem.b . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  A )
12 fseqenlem.f . . . . . . . . . . . 12  |-  ( ph  ->  F : ( A  X.  A ) -1-1-onto-> A )
13 fseqenlem.g . . . . . . . . . . . 12  |-  G  = seq𝜔 ( ( n  e.  _V ,  f  e.  _V  |->  ( x  e.  ( A  ^m  suc  n ) 
|->  ( ( f `  ( x  |`  n ) ) F ( x `
 n ) ) ) ) ,  { <.
(/) ,  B >. } )
1410, 11, 12, 13fseqenlem1 8194 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  om )  ->  ( G `  k ) : ( A  ^m  k )
-1-1-> A )
1514adantrr 716 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( G `  k
) : ( A  ^m  k ) -1-1-> A
)
16 f1f 5606 . . . . . . . . . 10  |-  ( ( G `  k ) : ( A  ^m  k ) -1-1-> A  -> 
( G `  k
) : ( A  ^m  k ) --> A )
1715, 16syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( G `  k
) : ( A  ^m  k ) --> A )
18 simprr 756 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
y  e.  ( A  ^m  k ) )
1917, 18ffvelrnd 5844 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( ( G `  k ) `  y
)  e.  A )
209, 19eqeltrd 2517 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( ( G `  dom  y ) `  y
)  e.  A )
21 opelxpi 4871 . . . . . . 7  |-  ( ( dom  y  e.  om  /\  ( ( G `  dom  y ) `  y
)  e.  A )  ->  <. dom  y , 
( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) )
227, 20, 21syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  ->  <. dom  y ,  ( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) )
2322rexlimdvaa 2842 . . . . 5  |-  ( ph  ->  ( E. k  e. 
om  y  e.  ( A  ^m  k )  ->  <. dom  y , 
( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) ) )
241, 23syl5bi 217 . . . 4  |-  ( ph  ->  ( y  e.  U_ k  e.  om  ( A  ^m  k )  ->  <. dom  y ,  ( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) ) )
2524imp 429 . . 3  |-  ( (
ph  /\  y  e.  U_ k  e.  om  ( A  ^m  k ) )  ->  <. dom  y , 
( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) )
26 fseqenlem.k . . 3  |-  K  =  ( y  e.  U_ k  e.  om  ( A  ^m  k )  |->  <. dom  y ,  ( ( G `  dom  y
) `  y ) >. )
2725, 26fmptd 5867 . 2  |-  ( ph  ->  K : U_ k  e.  om  ( A  ^m  k ) --> ( om 
X.  A ) )
28 ffun 5561 . . . . . . . . . . . . . . 15  |-  ( K : U_ k  e. 
om  ( A  ^m  k ) --> ( om 
X.  A )  ->  Fun  K )
29 funbrfv2b 5736 . . . . . . . . . . . . . . 15  |-  ( Fun 
K  ->  ( z K w  <->  ( z  e. 
dom  K  /\  ( K `  z )  =  w ) ) )
3027, 28, 293syl 20 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( z K w  <-> 
( z  e.  dom  K  /\  ( K `  z )  =  w ) ) )
3130simplbda 624 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z K w )  ->  ( K `  z )  =  w )
3230simprbda 623 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z K w )  ->  z  e.  dom  K )
33 fdm 5563 . . . . . . . . . . . . . . . . 17  |-  ( K : U_ k  e. 
om  ( A  ^m  k ) --> ( om 
X.  A )  ->  dom  K  =  U_ k  e.  om  ( A  ^m  k ) )
3427, 33syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  K  =  U_ k  e.  om  ( A  ^m  k ) )
3534adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z K w )  ->  dom  K  =  U_ k  e. 
om  ( A  ^m  k ) )
3632, 35eleqtrd 2519 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z K w )  ->  z  e.  U_ k  e.  om  ( A  ^m  k
) )
37 dmeq 5040 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  dom  y  =  dom  z )
3837fveq2d 5695 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  ( G `  dom  y )  =  ( G `  dom  z ) )
39 id 22 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  y  =  z )
4038, 39fveq12d 5697 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  (
( G `  dom  y ) `  y
)  =  ( ( G `  dom  z
) `  z )
)
4137, 40opeq12d 4067 . . . . . . . . . . . . . . 15  |-  ( y  =  z  ->  <. dom  y ,  ( ( G `
 dom  y ) `  y ) >.  =  <. dom  z ,  ( ( G `  dom  z
) `  z ) >. )
42 opex 4556 . . . . . . . . . . . . . . 15  |-  <. dom  z ,  ( ( G `
 dom  z ) `  z ) >.  e.  _V
4341, 26, 42fvmpt 5774 . . . . . . . . . . . . . 14  |-  ( z  e.  U_ k  e. 
om  ( A  ^m  k )  ->  ( K `  z )  =  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )
4436, 43syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z K w )  ->  ( K `  z )  =  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )
4531, 44eqtr3d 2477 . . . . . . . . . . . 12  |-  ( (
ph  /\  z K w )  ->  w  =  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )
4645fveq2d 5695 . . . . . . . . . . 11  |-  ( (
ph  /\  z K w )  ->  ( 1st `  w )  =  ( 1st `  <. dom  z ,  ( ( G `  dom  z
) `  z ) >. ) )
47 vex 2975 . . . . . . . . . . . . 13  |-  z  e. 
_V
4847dmex 6511 . . . . . . . . . . . 12  |-  dom  z  e.  _V
49 fvex 5701 . . . . . . . . . . . 12  |-  ( ( G `  dom  z
) `  z )  e.  _V
5048, 49op1st 6585 . . . . . . . . . . 11  |-  ( 1st `  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )  =  dom  z
5146, 50syl6eq 2491 . . . . . . . . . 10  |-  ( (
ph  /\  z K w )  ->  ( 1st `  w )  =  dom  z )
5251fveq2d 5695 . . . . . . . . 9  |-  ( (
ph  /\  z K w )  ->  ( G `  ( 1st `  w ) )  =  ( G `  dom  z ) )
5352cnveqd 5015 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  `' ( G `  ( 1st `  w ) )  =  `' ( G `  dom  z ) )
5445fveq2d 5695 . . . . . . . . 9  |-  ( (
ph  /\  z K w )  ->  ( 2nd `  w )  =  ( 2nd `  <. dom  z ,  ( ( G `  dom  z
) `  z ) >. ) )
5548, 49op2nd 6586 . . . . . . . . 9  |-  ( 2nd `  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )  =  ( ( G `  dom  z ) `  z
)
5654, 55syl6eq 2491 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  ( 2nd `  w )  =  ( ( G `  dom  z ) `  z
) )
5753, 56fveq12d 5697 . . . . . . 7  |-  ( (
ph  /\  z K w )  ->  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) )  =  ( `' ( G `
 dom  z ) `  ( ( G `  dom  z ) `  z
) ) )
58 eliun 4175 . . . . . . . . . . . . 13  |-  ( z  e.  U_ k  e. 
om  ( A  ^m  k )  <->  E. k  e.  om  z  e.  ( A  ^m  k ) )
59 elmapi 7234 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( A  ^m  k )  ->  z : k --> A )
6059adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
z : k --> A )
61 fdm 5563 . . . . . . . . . . . . . . . . 17  |-  ( z : k --> A  ->  dom  z  =  k
)
6260, 61syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  ->  dom  z  =  k
)
63 simpl 457 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
k  e.  om )
6462, 63eqeltrd 2517 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  ->  dom  z  e.  om )
65 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
z  e.  ( A  ^m  k ) )
6662oveq2d 6107 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
( A  ^m  dom  z )  =  ( A  ^m  k ) )
6765, 66eleqtrrd 2520 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
z  e.  ( A  ^m  dom  z ) )
6864, 67jca 532 . . . . . . . . . . . . . 14  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
( dom  z  e.  om 
/\  z  e.  ( A  ^m  dom  z
) ) )
6968rexlimiva 2836 . . . . . . . . . . . . 13  |-  ( E. k  e.  om  z  e.  ( A  ^m  k
)  ->  ( dom  z  e.  om  /\  z  e.  ( A  ^m  dom  z ) ) )
7058, 69sylbi 195 . . . . . . . . . . . 12  |-  ( z  e.  U_ k  e. 
om  ( A  ^m  k )  ->  ( dom  z  e.  om  /\  z  e.  ( A  ^m  dom  z ) ) )
7136, 70syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  z K w )  ->  ( dom  z  e.  om  /\  z  e.  ( A  ^m  dom  z ) ) )
7271simpld 459 . . . . . . . . . 10  |-  ( (
ph  /\  z K w )  ->  dom  z  e.  om )
7310, 11, 12, 13fseqenlem1 8194 . . . . . . . . . 10  |-  ( (
ph  /\  dom  z  e. 
om )  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-> A )
7472, 73syldan 470 . . . . . . . . 9  |-  ( (
ph  /\  z K w )  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-> A )
75 f1f1orn 5652 . . . . . . . . 9  |-  ( ( G `  dom  z
) : ( A  ^m  dom  z )
-1-1-> A  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-onto-> ran  ( G `  dom  z ) )
7674, 75syl 16 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-onto-> ran  ( G `  dom  z ) )
7771simprd 463 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  z  e.  ( A  ^m  dom  z ) )
78 f1ocnvfv1 5983 . . . . . . . 8  |-  ( ( ( G `  dom  z ) : ( A  ^m  dom  z
)
-1-1-onto-> ran  ( G `  dom  z )  /\  z  e.  ( A  ^m  dom  z ) )  -> 
( `' ( G `
 dom  z ) `  ( ( G `  dom  z ) `  z
) )  =  z )
7976, 77, 78syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  z K w )  ->  ( `' ( G `  dom  z ) `  (
( G `  dom  z ) `  z
) )  =  z )
8057, 79eqtr2d 2476 . . . . . 6  |-  ( (
ph  /\  z K w )  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) )
8180ex 434 . . . . 5  |-  ( ph  ->  ( z K w  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) ) )
8281alrimiv 1685 . . . 4  |-  ( ph  ->  A. z ( z K w  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) ) )
83 mo2icl 3138 . . . 4  |-  ( A. z ( z K w  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) )  ->  E* z  z K w )
8482, 83syl 16 . . 3  |-  ( ph  ->  E* z  z K w )
8584alrimiv 1685 . 2  |-  ( ph  ->  A. w E* z 
z K w )
86 dff12 5605 . 2  |-  ( K : U_ k  e. 
om  ( A  ^m  k ) -1-1-> ( om 
X.  A )  <->  ( K : U_ k  e.  om  ( A  ^m  k
) --> ( om  X.  A )  /\  A. w E* z  z K w ) )
8727, 85, 86sylanbrc 664 1  |-  ( ph  ->  K : U_ k  e.  om  ( A  ^m  k ) -1-1-> ( om 
X.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1367    = wceq 1369    e. wcel 1756   E*wmo 2254   E.wrex 2716   _Vcvv 2972   (/)c0 3637   {csn 3877   <.cop 3883   U_ciun 4171   class class class wbr 4292    e. cmpt 4350   suc csuc 4721    X. cxp 4838   `'ccnv 4839   dom cdm 4840   ran crn 4841    |` cres 4842   Fun wfun 5412   -->wf 5414   -1-1->wf1 5415   -1-1-onto->wf1o 5417   ` cfv 5418  (class class class)co 6091    e. cmpt2 6093   omcom 6476   1stc1st 6575   2ndc2nd 6576  seq𝜔cseqom 6902    ^m cmap 7214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-seqom 6903  df-1o 6920  df-map 7216
This theorem is referenced by:  fseqen  8197  pwfseqlem5  8830
  Copyright terms: Public domain W3C validator