MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqenlem2 Structured version   Unicode version

Theorem fseqenlem2 8402
Description: Lemma for fseqen 8404. (Contributed by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fseqenlem.a  |-  ( ph  ->  A  e.  V )
fseqenlem.b  |-  ( ph  ->  B  e.  A )
fseqenlem.f  |-  ( ph  ->  F : ( A  X.  A ) -1-1-onto-> A )
fseqenlem.g  |-  G  = seq𝜔 ( ( n  e.  _V ,  f  e.  _V  |->  ( x  e.  ( A  ^m  suc  n ) 
|->  ( ( f `  ( x  |`  n ) ) F ( x `
 n ) ) ) ) ,  { <.
(/) ,  B >. } )
fseqenlem.k  |-  K  =  ( y  e.  U_ k  e.  om  ( A  ^m  k )  |->  <. dom  y ,  ( ( G `  dom  y
) `  y ) >. )
Assertion
Ref Expression
fseqenlem2  |-  ( ph  ->  K : U_ k  e.  om  ( A  ^m  k ) -1-1-> ( om 
X.  A ) )
Distinct variable groups:    y, B    f, n, x, F    y,
k, G    f, k,
y, A, n, x    ph, k, n, x, y
Allowed substitution hints:    ph( f)    B( x, f, k, n)    F( y, k)    G( x, f, n)    K( x, y, f, k, n)    V( x, y, f, k, n)

Proof of Theorem fseqenlem2
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4330 . . . . 5  |-  ( y  e.  U_ k  e. 
om  ( A  ^m  k )  <->  E. k  e.  om  y  e.  ( A  ^m  k ) )
2 elmapi 7437 . . . . . . . . . 10  |-  ( y  e.  ( A  ^m  k )  ->  y : k --> A )
32ad2antll 728 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
y : k --> A )
4 fdm 5733 . . . . . . . . 9  |-  ( y : k --> A  ->  dom  y  =  k
)
53, 4syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  ->  dom  y  =  k
)
6 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
k  e.  om )
75, 6eqeltrd 2555 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  ->  dom  y  e.  om )
85fveq2d 5868 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( G `  dom  y )  =  ( G `  k ) )
98fveq1d 5866 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( ( G `  dom  y ) `  y
)  =  ( ( G `  k ) `
 y ) )
10 fseqenlem.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  V )
11 fseqenlem.b . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  A )
12 fseqenlem.f . . . . . . . . . . . 12  |-  ( ph  ->  F : ( A  X.  A ) -1-1-onto-> A )
13 fseqenlem.g . . . . . . . . . . . 12  |-  G  = seq𝜔 ( ( n  e.  _V ,  f  e.  _V  |->  ( x  e.  ( A  ^m  suc  n ) 
|->  ( ( f `  ( x  |`  n ) ) F ( x `
 n ) ) ) ) ,  { <.
(/) ,  B >. } )
1410, 11, 12, 13fseqenlem1 8401 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  om )  ->  ( G `  k ) : ( A  ^m  k )
-1-1-> A )
1514adantrr 716 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( G `  k
) : ( A  ^m  k ) -1-1-> A
)
16 f1f 5779 . . . . . . . . . 10  |-  ( ( G `  k ) : ( A  ^m  k ) -1-1-> A  -> 
( G `  k
) : ( A  ^m  k ) --> A )
1715, 16syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( G `  k
) : ( A  ^m  k ) --> A )
18 simprr 756 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
y  e.  ( A  ^m  k ) )
1917, 18ffvelrnd 6020 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( ( G `  k ) `  y
)  e.  A )
209, 19eqeltrd 2555 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( ( G `  dom  y ) `  y
)  e.  A )
21 opelxpi 5030 . . . . . . 7  |-  ( ( dom  y  e.  om  /\  ( ( G `  dom  y ) `  y
)  e.  A )  ->  <. dom  y , 
( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) )
227, 20, 21syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  ->  <. dom  y ,  ( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) )
2322rexlimdvaa 2956 . . . . 5  |-  ( ph  ->  ( E. k  e. 
om  y  e.  ( A  ^m  k )  ->  <. dom  y , 
( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) ) )
241, 23syl5bi 217 . . . 4  |-  ( ph  ->  ( y  e.  U_ k  e.  om  ( A  ^m  k )  ->  <. dom  y ,  ( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) ) )
2524imp 429 . . 3  |-  ( (
ph  /\  y  e.  U_ k  e.  om  ( A  ^m  k ) )  ->  <. dom  y , 
( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) )
26 fseqenlem.k . . 3  |-  K  =  ( y  e.  U_ k  e.  om  ( A  ^m  k )  |->  <. dom  y ,  ( ( G `  dom  y
) `  y ) >. )
2725, 26fmptd 6043 . 2  |-  ( ph  ->  K : U_ k  e.  om  ( A  ^m  k ) --> ( om 
X.  A ) )
28 ffun 5731 . . . . . . . . . . . . . . 15  |-  ( K : U_ k  e. 
om  ( A  ^m  k ) --> ( om 
X.  A )  ->  Fun  K )
29 funbrfv2b 5910 . . . . . . . . . . . . . . 15  |-  ( Fun 
K  ->  ( z K w  <->  ( z  e. 
dom  K  /\  ( K `  z )  =  w ) ) )
3027, 28, 293syl 20 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( z K w  <-> 
( z  e.  dom  K  /\  ( K `  z )  =  w ) ) )
3130simplbda 624 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z K w )  ->  ( K `  z )  =  w )
3230simprbda 623 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z K w )  ->  z  e.  dom  K )
33 fdm 5733 . . . . . . . . . . . . . . . . 17  |-  ( K : U_ k  e. 
om  ( A  ^m  k ) --> ( om 
X.  A )  ->  dom  K  =  U_ k  e.  om  ( A  ^m  k ) )
3427, 33syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  K  =  U_ k  e.  om  ( A  ^m  k ) )
3534adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z K w )  ->  dom  K  =  U_ k  e. 
om  ( A  ^m  k ) )
3632, 35eleqtrd 2557 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z K w )  ->  z  e.  U_ k  e.  om  ( A  ^m  k
) )
37 dmeq 5201 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  dom  y  =  dom  z )
3837fveq2d 5868 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  ( G `  dom  y )  =  ( G `  dom  z ) )
39 id 22 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  y  =  z )
4038, 39fveq12d 5870 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  (
( G `  dom  y ) `  y
)  =  ( ( G `  dom  z
) `  z )
)
4137, 40opeq12d 4221 . . . . . . . . . . . . . . 15  |-  ( y  =  z  ->  <. dom  y ,  ( ( G `
 dom  y ) `  y ) >.  =  <. dom  z ,  ( ( G `  dom  z
) `  z ) >. )
42 opex 4711 . . . . . . . . . . . . . . 15  |-  <. dom  z ,  ( ( G `
 dom  z ) `  z ) >.  e.  _V
4341, 26, 42fvmpt 5948 . . . . . . . . . . . . . 14  |-  ( z  e.  U_ k  e. 
om  ( A  ^m  k )  ->  ( K `  z )  =  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )
4436, 43syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z K w )  ->  ( K `  z )  =  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )
4531, 44eqtr3d 2510 . . . . . . . . . . . 12  |-  ( (
ph  /\  z K w )  ->  w  =  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )
4645fveq2d 5868 . . . . . . . . . . 11  |-  ( (
ph  /\  z K w )  ->  ( 1st `  w )  =  ( 1st `  <. dom  z ,  ( ( G `  dom  z
) `  z ) >. ) )
47 vex 3116 . . . . . . . . . . . . 13  |-  z  e. 
_V
4847dmex 6714 . . . . . . . . . . . 12  |-  dom  z  e.  _V
49 fvex 5874 . . . . . . . . . . . 12  |-  ( ( G `  dom  z
) `  z )  e.  _V
5048, 49op1st 6789 . . . . . . . . . . 11  |-  ( 1st `  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )  =  dom  z
5146, 50syl6eq 2524 . . . . . . . . . 10  |-  ( (
ph  /\  z K w )  ->  ( 1st `  w )  =  dom  z )
5251fveq2d 5868 . . . . . . . . 9  |-  ( (
ph  /\  z K w )  ->  ( G `  ( 1st `  w ) )  =  ( G `  dom  z ) )
5352cnveqd 5176 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  `' ( G `  ( 1st `  w ) )  =  `' ( G `  dom  z ) )
5445fveq2d 5868 . . . . . . . . 9  |-  ( (
ph  /\  z K w )  ->  ( 2nd `  w )  =  ( 2nd `  <. dom  z ,  ( ( G `  dom  z
) `  z ) >. ) )
5548, 49op2nd 6790 . . . . . . . . 9  |-  ( 2nd `  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )  =  ( ( G `  dom  z ) `  z
)
5654, 55syl6eq 2524 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  ( 2nd `  w )  =  ( ( G `  dom  z ) `  z
) )
5753, 56fveq12d 5870 . . . . . . 7  |-  ( (
ph  /\  z K w )  ->  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) )  =  ( `' ( G `
 dom  z ) `  ( ( G `  dom  z ) `  z
) ) )
58 eliun 4330 . . . . . . . . . . . . 13  |-  ( z  e.  U_ k  e. 
om  ( A  ^m  k )  <->  E. k  e.  om  z  e.  ( A  ^m  k ) )
59 elmapi 7437 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( A  ^m  k )  ->  z : k --> A )
6059adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
z : k --> A )
61 fdm 5733 . . . . . . . . . . . . . . . . 17  |-  ( z : k --> A  ->  dom  z  =  k
)
6260, 61syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  ->  dom  z  =  k
)
63 simpl 457 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
k  e.  om )
6462, 63eqeltrd 2555 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  ->  dom  z  e.  om )
65 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
z  e.  ( A  ^m  k ) )
6662oveq2d 6298 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
( A  ^m  dom  z )  =  ( A  ^m  k ) )
6765, 66eleqtrrd 2558 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
z  e.  ( A  ^m  dom  z ) )
6864, 67jca 532 . . . . . . . . . . . . . 14  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
( dom  z  e.  om 
/\  z  e.  ( A  ^m  dom  z
) ) )
6968rexlimiva 2951 . . . . . . . . . . . . 13  |-  ( E. k  e.  om  z  e.  ( A  ^m  k
)  ->  ( dom  z  e.  om  /\  z  e.  ( A  ^m  dom  z ) ) )
7058, 69sylbi 195 . . . . . . . . . . . 12  |-  ( z  e.  U_ k  e. 
om  ( A  ^m  k )  ->  ( dom  z  e.  om  /\  z  e.  ( A  ^m  dom  z ) ) )
7136, 70syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  z K w )  ->  ( dom  z  e.  om  /\  z  e.  ( A  ^m  dom  z ) ) )
7271simpld 459 . . . . . . . . . 10  |-  ( (
ph  /\  z K w )  ->  dom  z  e.  om )
7310, 11, 12, 13fseqenlem1 8401 . . . . . . . . . 10  |-  ( (
ph  /\  dom  z  e. 
om )  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-> A )
7472, 73syldan 470 . . . . . . . . 9  |-  ( (
ph  /\  z K w )  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-> A )
75 f1f1orn 5825 . . . . . . . . 9  |-  ( ( G `  dom  z
) : ( A  ^m  dom  z )
-1-1-> A  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-onto-> ran  ( G `  dom  z ) )
7674, 75syl 16 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-onto-> ran  ( G `  dom  z ) )
7771simprd 463 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  z  e.  ( A  ^m  dom  z ) )
78 f1ocnvfv1 6168 . . . . . . . 8  |-  ( ( ( G `  dom  z ) : ( A  ^m  dom  z
)
-1-1-onto-> ran  ( G `  dom  z )  /\  z  e.  ( A  ^m  dom  z ) )  -> 
( `' ( G `
 dom  z ) `  ( ( G `  dom  z ) `  z
) )  =  z )
7976, 77, 78syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  z K w )  ->  ( `' ( G `  dom  z ) `  (
( G `  dom  z ) `  z
) )  =  z )
8057, 79eqtr2d 2509 . . . . . 6  |-  ( (
ph  /\  z K w )  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) )
8180ex 434 . . . . 5  |-  ( ph  ->  ( z K w  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) ) )
8281alrimiv 1695 . . . 4  |-  ( ph  ->  A. z ( z K w  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) ) )
83 mo2icl 3282 . . . 4  |-  ( A. z ( z K w  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) )  ->  E* z  z K w )
8482, 83syl 16 . . 3  |-  ( ph  ->  E* z  z K w )
8584alrimiv 1695 . 2  |-  ( ph  ->  A. w E* z 
z K w )
86 dff12 5778 . 2  |-  ( K : U_ k  e. 
om  ( A  ^m  k ) -1-1-> ( om 
X.  A )  <->  ( K : U_ k  e.  om  ( A  ^m  k
) --> ( om  X.  A )  /\  A. w E* z  z K w ) )
8727, 85, 86sylanbrc 664 1  |-  ( ph  ->  K : U_ k  e.  om  ( A  ^m  k ) -1-1-> ( om 
X.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767   E*wmo 2276   E.wrex 2815   _Vcvv 3113   (/)c0 3785   {csn 4027   <.cop 4033   U_ciun 4325   class class class wbr 4447    |-> cmpt 4505   suc csuc 4880    X. cxp 4997   `'ccnv 4998   dom cdm 4999   ran crn 5000    |` cres 5001   Fun wfun 5580   -->wf 5582   -1-1->wf1 5583   -1-1-onto->wf1o 5585   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   omcom 6678   1stc1st 6779   2ndc2nd 6780  seq𝜔cseqom 7109    ^m cmap 7417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-seqom 7110  df-1o 7127  df-map 7419
This theorem is referenced by:  fseqen  8404  pwfseqlem5  9037
  Copyright terms: Public domain W3C validator