MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqenlem2 Structured version   Unicode version

Theorem fseqenlem2 8319
Description: Lemma for fseqen 8321. (Contributed by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fseqenlem.a  |-  ( ph  ->  A  e.  V )
fseqenlem.b  |-  ( ph  ->  B  e.  A )
fseqenlem.f  |-  ( ph  ->  F : ( A  X.  A ) -1-1-onto-> A )
fseqenlem.g  |-  G  = seq𝜔 ( ( n  e.  _V ,  f  e.  _V  |->  ( x  e.  ( A  ^m  suc  n ) 
|->  ( ( f `  ( x  |`  n ) ) F ( x `
 n ) ) ) ) ,  { <.
(/) ,  B >. } )
fseqenlem.k  |-  K  =  ( y  e.  U_ k  e.  om  ( A  ^m  k )  |->  <. dom  y ,  ( ( G `  dom  y
) `  y ) >. )
Assertion
Ref Expression
fseqenlem2  |-  ( ph  ->  K : U_ k  e.  om  ( A  ^m  k ) -1-1-> ( om 
X.  A ) )
Distinct variable groups:    y, B    f, n, x, F    y,
k, G    f, k,
y, A, n, x    ph, k, n, x, y
Allowed substitution hints:    ph( f)    B( x, f, k, n)    F( y, k)    G( x, f, n)    K( x, y, f, k, n)    V( x, y, f, k, n)

Proof of Theorem fseqenlem2
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4248 . . . . 5  |-  ( y  e.  U_ k  e. 
om  ( A  ^m  k )  <->  E. k  e.  om  y  e.  ( A  ^m  k ) )
2 elmapi 7359 . . . . . . . . . 10  |-  ( y  e.  ( A  ^m  k )  ->  y : k --> A )
32ad2antll 726 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
y : k --> A )
4 fdm 5643 . . . . . . . . 9  |-  ( y : k --> A  ->  dom  y  =  k
)
53, 4syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  ->  dom  y  =  k
)
6 simprl 754 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
k  e.  om )
75, 6eqeltrd 2470 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  ->  dom  y  e.  om )
85fveq2d 5778 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( G `  dom  y )  =  ( G `  k ) )
98fveq1d 5776 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( ( G `  dom  y ) `  y
)  =  ( ( G `  k ) `
 y ) )
10 fseqenlem.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  V )
11 fseqenlem.b . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  A )
12 fseqenlem.f . . . . . . . . . . . 12  |-  ( ph  ->  F : ( A  X.  A ) -1-1-onto-> A )
13 fseqenlem.g . . . . . . . . . . . 12  |-  G  = seq𝜔 ( ( n  e.  _V ,  f  e.  _V  |->  ( x  e.  ( A  ^m  suc  n ) 
|->  ( ( f `  ( x  |`  n ) ) F ( x `
 n ) ) ) ) ,  { <.
(/) ,  B >. } )
1410, 11, 12, 13fseqenlem1 8318 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  om )  ->  ( G `  k ) : ( A  ^m  k )
-1-1-> A )
1514adantrr 714 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( G `  k
) : ( A  ^m  k ) -1-1-> A
)
16 f1f 5689 . . . . . . . . . 10  |-  ( ( G `  k ) : ( A  ^m  k ) -1-1-> A  -> 
( G `  k
) : ( A  ^m  k ) --> A )
1715, 16syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( G `  k
) : ( A  ^m  k ) --> A )
18 simprr 755 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
y  e.  ( A  ^m  k ) )
1917, 18ffvelrnd 5934 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( ( G `  k ) `  y
)  e.  A )
209, 19eqeltrd 2470 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( ( G `  dom  y ) `  y
)  e.  A )
21 opelxpi 4945 . . . . . . 7  |-  ( ( dom  y  e.  om  /\  ( ( G `  dom  y ) `  y
)  e.  A )  ->  <. dom  y , 
( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) )
227, 20, 21syl2anc 659 . . . . . 6  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  ->  <. dom  y ,  ( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) )
2322rexlimdvaa 2875 . . . . 5  |-  ( ph  ->  ( E. k  e. 
om  y  e.  ( A  ^m  k )  ->  <. dom  y , 
( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) ) )
241, 23syl5bi 217 . . . 4  |-  ( ph  ->  ( y  e.  U_ k  e.  om  ( A  ^m  k )  ->  <. dom  y ,  ( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) ) )
2524imp 427 . . 3  |-  ( (
ph  /\  y  e.  U_ k  e.  om  ( A  ^m  k ) )  ->  <. dom  y , 
( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) )
26 fseqenlem.k . . 3  |-  K  =  ( y  e.  U_ k  e.  om  ( A  ^m  k )  |->  <. dom  y ,  ( ( G `  dom  y
) `  y ) >. )
2725, 26fmptd 5957 . 2  |-  ( ph  ->  K : U_ k  e.  om  ( A  ^m  k ) --> ( om 
X.  A ) )
28 ffun 5641 . . . . . . . . . . . . . . 15  |-  ( K : U_ k  e. 
om  ( A  ^m  k ) --> ( om 
X.  A )  ->  Fun  K )
29 funbrfv2b 5818 . . . . . . . . . . . . . . 15  |-  ( Fun 
K  ->  ( z K w  <->  ( z  e. 
dom  K  /\  ( K `  z )  =  w ) ) )
3027, 28, 293syl 20 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( z K w  <-> 
( z  e.  dom  K  /\  ( K `  z )  =  w ) ) )
3130simplbda 622 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z K w )  ->  ( K `  z )  =  w )
3230simprbda 621 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z K w )  ->  z  e.  dom  K )
33 fdm 5643 . . . . . . . . . . . . . . . . 17  |-  ( K : U_ k  e. 
om  ( A  ^m  k ) --> ( om 
X.  A )  ->  dom  K  =  U_ k  e.  om  ( A  ^m  k ) )
3427, 33syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  K  =  U_ k  e.  om  ( A  ^m  k ) )
3534adantr 463 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z K w )  ->  dom  K  =  U_ k  e. 
om  ( A  ^m  k ) )
3632, 35eleqtrd 2472 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z K w )  ->  z  e.  U_ k  e.  om  ( A  ^m  k
) )
37 dmeq 5116 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  dom  y  =  dom  z )
3837fveq2d 5778 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  ( G `  dom  y )  =  ( G `  dom  z ) )
39 id 22 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  y  =  z )
4038, 39fveq12d 5780 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  (
( G `  dom  y ) `  y
)  =  ( ( G `  dom  z
) `  z )
)
4137, 40opeq12d 4139 . . . . . . . . . . . . . . 15  |-  ( y  =  z  ->  <. dom  y ,  ( ( G `
 dom  y ) `  y ) >.  =  <. dom  z ,  ( ( G `  dom  z
) `  z ) >. )
42 opex 4626 . . . . . . . . . . . . . . 15  |-  <. dom  z ,  ( ( G `
 dom  z ) `  z ) >.  e.  _V
4341, 26, 42fvmpt 5857 . . . . . . . . . . . . . 14  |-  ( z  e.  U_ k  e. 
om  ( A  ^m  k )  ->  ( K `  z )  =  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )
4436, 43syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z K w )  ->  ( K `  z )  =  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )
4531, 44eqtr3d 2425 . . . . . . . . . . . 12  |-  ( (
ph  /\  z K w )  ->  w  =  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )
4645fveq2d 5778 . . . . . . . . . . 11  |-  ( (
ph  /\  z K w )  ->  ( 1st `  w )  =  ( 1st `  <. dom  z ,  ( ( G `  dom  z
) `  z ) >. ) )
47 vex 3037 . . . . . . . . . . . . 13  |-  z  e. 
_V
4847dmex 6632 . . . . . . . . . . . 12  |-  dom  z  e.  _V
49 fvex 5784 . . . . . . . . . . . 12  |-  ( ( G `  dom  z
) `  z )  e.  _V
5048, 49op1st 6707 . . . . . . . . . . 11  |-  ( 1st `  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )  =  dom  z
5146, 50syl6eq 2439 . . . . . . . . . 10  |-  ( (
ph  /\  z K w )  ->  ( 1st `  w )  =  dom  z )
5251fveq2d 5778 . . . . . . . . 9  |-  ( (
ph  /\  z K w )  ->  ( G `  ( 1st `  w ) )  =  ( G `  dom  z ) )
5352cnveqd 5091 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  `' ( G `  ( 1st `  w ) )  =  `' ( G `  dom  z ) )
5445fveq2d 5778 . . . . . . . . 9  |-  ( (
ph  /\  z K w )  ->  ( 2nd `  w )  =  ( 2nd `  <. dom  z ,  ( ( G `  dom  z
) `  z ) >. ) )
5548, 49op2nd 6708 . . . . . . . . 9  |-  ( 2nd `  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )  =  ( ( G `  dom  z ) `  z
)
5654, 55syl6eq 2439 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  ( 2nd `  w )  =  ( ( G `  dom  z ) `  z
) )
5753, 56fveq12d 5780 . . . . . . 7  |-  ( (
ph  /\  z K w )  ->  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) )  =  ( `' ( G `
 dom  z ) `  ( ( G `  dom  z ) `  z
) ) )
58 eliun 4248 . . . . . . . . . . . . 13  |-  ( z  e.  U_ k  e. 
om  ( A  ^m  k )  <->  E. k  e.  om  z  e.  ( A  ^m  k ) )
59 elmapi 7359 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( A  ^m  k )  ->  z : k --> A )
6059adantl 464 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
z : k --> A )
61 fdm 5643 . . . . . . . . . . . . . . . . 17  |-  ( z : k --> A  ->  dom  z  =  k
)
6260, 61syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  ->  dom  z  =  k
)
63 simpl 455 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
k  e.  om )
6462, 63eqeltrd 2470 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  ->  dom  z  e.  om )
65 simpr 459 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
z  e.  ( A  ^m  k ) )
6662oveq2d 6212 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
( A  ^m  dom  z )  =  ( A  ^m  k ) )
6765, 66eleqtrrd 2473 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
z  e.  ( A  ^m  dom  z ) )
6864, 67jca 530 . . . . . . . . . . . . . 14  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
( dom  z  e.  om 
/\  z  e.  ( A  ^m  dom  z
) ) )
6968rexlimiva 2870 . . . . . . . . . . . . 13  |-  ( E. k  e.  om  z  e.  ( A  ^m  k
)  ->  ( dom  z  e.  om  /\  z  e.  ( A  ^m  dom  z ) ) )
7058, 69sylbi 195 . . . . . . . . . . . 12  |-  ( z  e.  U_ k  e. 
om  ( A  ^m  k )  ->  ( dom  z  e.  om  /\  z  e.  ( A  ^m  dom  z ) ) )
7136, 70syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  z K w )  ->  ( dom  z  e.  om  /\  z  e.  ( A  ^m  dom  z ) ) )
7271simpld 457 . . . . . . . . . 10  |-  ( (
ph  /\  z K w )  ->  dom  z  e.  om )
7310, 11, 12, 13fseqenlem1 8318 . . . . . . . . . 10  |-  ( (
ph  /\  dom  z  e. 
om )  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-> A )
7472, 73syldan 468 . . . . . . . . 9  |-  ( (
ph  /\  z K w )  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-> A )
75 f1f1orn 5735 . . . . . . . . 9  |-  ( ( G `  dom  z
) : ( A  ^m  dom  z )
-1-1-> A  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-onto-> ran  ( G `  dom  z ) )
7674, 75syl 16 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-onto-> ran  ( G `  dom  z ) )
7771simprd 461 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  z  e.  ( A  ^m  dom  z ) )
78 f1ocnvfv1 6083 . . . . . . . 8  |-  ( ( ( G `  dom  z ) : ( A  ^m  dom  z
)
-1-1-onto-> ran  ( G `  dom  z )  /\  z  e.  ( A  ^m  dom  z ) )  -> 
( `' ( G `
 dom  z ) `  ( ( G `  dom  z ) `  z
) )  =  z )
7976, 77, 78syl2anc 659 . . . . . . 7  |-  ( (
ph  /\  z K w )  ->  ( `' ( G `  dom  z ) `  (
( G `  dom  z ) `  z
) )  =  z )
8057, 79eqtr2d 2424 . . . . . 6  |-  ( (
ph  /\  z K w )  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) )
8180ex 432 . . . . 5  |-  ( ph  ->  ( z K w  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) ) )
8281alrimiv 1727 . . . 4  |-  ( ph  ->  A. z ( z K w  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) ) )
83 mo2icl 3203 . . . 4  |-  ( A. z ( z K w  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) )  ->  E* z  z K w )
8482, 83syl 16 . . 3  |-  ( ph  ->  E* z  z K w )
8584alrimiv 1727 . 2  |-  ( ph  ->  A. w E* z 
z K w )
86 dff12 5688 . 2  |-  ( K : U_ k  e. 
om  ( A  ^m  k ) -1-1-> ( om 
X.  A )  <->  ( K : U_ k  e.  om  ( A  ^m  k
) --> ( om  X.  A )  /\  A. w E* z  z K w ) )
8727, 85, 86sylanbrc 662 1  |-  ( ph  ->  K : U_ k  e.  om  ( A  ^m  k ) -1-1-> ( om 
X.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1397    = wceq 1399    e. wcel 1826   E*wmo 2219   E.wrex 2733   _Vcvv 3034   (/)c0 3711   {csn 3944   <.cop 3950   U_ciun 4243   class class class wbr 4367    |-> cmpt 4425   suc csuc 4794    X. cxp 4911   `'ccnv 4912   dom cdm 4913   ran crn 4914    |` cres 4915   Fun wfun 5490   -->wf 5492   -1-1->wf1 5493   -1-1-onto->wf1o 5495   ` cfv 5496  (class class class)co 6196    |-> cmpt2 6198   omcom 6599   1stc1st 6697   2ndc2nd 6698  seq𝜔cseqom 7030    ^m cmap 7338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-seqom 7031  df-1o 7048  df-map 7340
This theorem is referenced by:  fseqen  8321  pwfseqlem5  8952
  Copyright terms: Public domain W3C validator