MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqen Structured version   Unicode version

Theorem fseqen 8309
Description: A set that is equinumerous to its Cartesian product is equinumerous to the set of finite sequences on it. (This can be proven more easily using some choice but this proof avoids it.) (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
fseqen  |-  ( ( ( A  X.  A
)  ~~  A  /\  A  =/=  (/) )  ->  U_ n  e.  om  ( A  ^m  n )  ~~  ( om  X.  A ) )
Distinct variable group:    A, n

Proof of Theorem fseqen
Dummy variables  f 
b  g  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 7430 . 2  |-  ( ( A  X.  A ) 
~~  A  <->  E. f 
f : ( A  X.  A ) -1-1-onto-> A )
2 n0 3755 . 2  |-  ( A  =/=  (/)  <->  E. b  b  e.  A )
3 eeanv 1944 . . 3  |-  ( E. f E. b ( f : ( A  X.  A ) -1-1-onto-> A  /\  b  e.  A )  <->  ( E. f  f : ( A  X.  A
)
-1-1-onto-> A  /\  E. b  b  e.  A ) )
4 omex 7961 . . . . . . 7  |-  om  e.  _V
5 simpl 457 . . . . . . . . 9  |-  ( ( f : ( A  X.  A ) -1-1-onto-> A  /\  b  e.  A )  ->  f : ( A  X.  A ) -1-1-onto-> A )
6 f1ofo 5757 . . . . . . . . 9  |-  ( f : ( A  X.  A ) -1-1-onto-> A  ->  f :
( A  X.  A
) -onto-> A )
7 forn 5732 . . . . . . . . 9  |-  ( f : ( A  X.  A ) -onto-> A  ->  ran  f  =  A
)
85, 6, 73syl 20 . . . . . . . 8  |-  ( ( f : ( A  X.  A ) -1-1-onto-> A  /\  b  e.  A )  ->  ran  f  =  A )
9 vex 3081 . . . . . . . . 9  |-  f  e. 
_V
109rnex 6623 . . . . . . . 8  |-  ran  f  e.  _V
118, 10syl6eqelr 2551 . . . . . . 7  |-  ( ( f : ( A  X.  A ) -1-1-onto-> A  /\  b  e.  A )  ->  A  e.  _V )
12 xpexg 6618 . . . . . . 7  |-  ( ( om  e.  _V  /\  A  e.  _V )  ->  ( om  X.  A
)  e.  _V )
134, 11, 12sylancr 663 . . . . . 6  |-  ( ( f : ( A  X.  A ) -1-1-onto-> A  /\  b  e.  A )  ->  ( om  X.  A
)  e.  _V )
14 simpr 461 . . . . . . 7  |-  ( ( f : ( A  X.  A ) -1-1-onto-> A  /\  b  e.  A )  ->  b  e.  A )
15 eqid 2454 . . . . . . 7  |- seq𝜔 ( ( k  e. 
_V ,  g  e. 
_V  |->  ( y  e.  ( A  ^m  suc  k )  |->  ( ( g `  ( y  |`  k ) ) f ( y `  k
) ) ) ) ,  { <. (/) ,  b
>. } )  = seq𝜔 ( ( k  e.  _V , 
g  e.  _V  |->  ( y  e.  ( A  ^m  suc  k ) 
|->  ( ( g `  ( y  |`  k
) ) f ( y `  k ) ) ) ) ,  { <. (/) ,  b >. } )
16 eqid 2454 . . . . . . 7  |-  ( x  e.  U_ n  e. 
om  ( A  ^m  n )  |->  <. dom  x ,  ( (seq𝜔 ( ( k  e.  _V , 
g  e.  _V  |->  ( y  e.  ( A  ^m  suc  k ) 
|->  ( ( g `  ( y  |`  k
) ) f ( y `  k ) ) ) ) ,  { <. (/) ,  b >. } ) `  dom  x ) `  x
) >. )  =  ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  <. dom  x ,  ( (seq𝜔 ( ( k  e.  _V , 
g  e.  _V  |->  ( y  e.  ( A  ^m  suc  k ) 
|->  ( ( g `  ( y  |`  k
) ) f ( y `  k ) ) ) ) ,  { <. (/) ,  b >. } ) `  dom  x ) `  x
) >. )
1711, 14, 5, 15, 16fseqenlem2 8307 . . . . . 6  |-  ( ( f : ( A  X.  A ) -1-1-onto-> A  /\  b  e.  A )  ->  ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  <. dom  x ,  ( (seq𝜔 ( ( k  e.  _V ,  g  e.  _V  |->  ( y  e.  ( A  ^m  suc  k
)  |->  ( ( g `
 ( y  |`  k ) ) f ( y `  k
) ) ) ) ,  { <. (/) ,  b
>. } ) `  dom  x ) `  x
) >. ) : U_ n  e.  om  ( A  ^m  n ) -1-1-> ( om  X.  A ) )
18 f1domg 7440 . . . . . 6  |-  ( ( om  X.  A )  e.  _V  ->  (
( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  <. dom  x ,  ( (seq𝜔 ( ( k  e.  _V ,  g  e.  _V  |->  ( y  e.  ( A  ^m  suc  k
)  |->  ( ( g `
 ( y  |`  k ) ) f ( y `  k
) ) ) ) ,  { <. (/) ,  b
>. } ) `  dom  x ) `  x
) >. ) : U_ n  e.  om  ( A  ^m  n ) -1-1-> ( om  X.  A )  ->  U_ n  e.  om  ( A  ^m  n
)  ~<_  ( om  X.  A ) ) )
1913, 17, 18sylc 60 . . . . 5  |-  ( ( f : ( A  X.  A ) -1-1-onto-> A  /\  b  e.  A )  ->  U_ n  e.  om  ( A  ^m  n
)  ~<_  ( om  X.  A ) )
20 fseqdom 8308 . . . . . 6  |-  ( A  e.  _V  ->  ( om  X.  A )  ~<_  U_ n  e.  om  ( A  ^m  n ) )
2111, 20syl 16 . . . . 5  |-  ( ( f : ( A  X.  A ) -1-1-onto-> A  /\  b  e.  A )  ->  ( om  X.  A
)  ~<_  U_ n  e.  om  ( A  ^m  n
) )
22 sbth 7542 . . . . 5  |-  ( (
U_ n  e.  om  ( A  ^m  n
)  ~<_  ( om  X.  A )  /\  ( om  X.  A )  ~<_  U_ n  e.  om  ( A  ^m  n ) )  ->  U_ n  e.  om  ( A  ^m  n
)  ~~  ( om  X.  A ) )
2319, 21, 22syl2anc 661 . . . 4  |-  ( ( f : ( A  X.  A ) -1-1-onto-> A  /\  b  e.  A )  ->  U_ n  e.  om  ( A  ^m  n
)  ~~  ( om  X.  A ) )
2423exlimivv 1690 . . 3  |-  ( E. f E. b ( f : ( A  X.  A ) -1-1-onto-> A  /\  b  e.  A )  ->  U_ n  e.  om  ( A  ^m  n
)  ~~  ( om  X.  A ) )
253, 24sylbir 213 . 2  |-  ( ( E. f  f : ( A  X.  A
)
-1-1-onto-> A  /\  E. b  b  e.  A )  ->  U_ n  e.  om  ( A  ^m  n
)  ~~  ( om  X.  A ) )
261, 2, 25syl2anb 479 1  |-  ( ( ( A  X.  A
)  ~~  A  /\  A  =/=  (/) )  ->  U_ n  e.  om  ( A  ^m  n )  ~~  ( om  X.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2648   _Vcvv 3078   (/)c0 3746   {csn 3986   <.cop 3992   U_ciun 4280   class class class wbr 4401    |-> cmpt 4459   suc csuc 4830    X. cxp 4947   dom cdm 4949   ran crn 4950    |` cres 4951   -1-1->wf1 5524   -onto->wfo 5525   -1-1-onto->wf1o 5526   ` cfv 5527  (class class class)co 6201    |-> cmpt2 6203   omcom 6587  seq𝜔cseqom 7013    ^m cmap 7325    ~~ cen 7418    ~<_ cdom 7419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-inf2 7959
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-seqom 7014  df-1o 7031  df-map 7327  df-en 7422  df-dom 7423
This theorem is referenced by:  infpwfien  8344
  Copyright terms: Public domain W3C validator