MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqdom Structured version   Unicode version

Theorem fseqdom 8455
Description: One half of fseqen 8456. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
fseqdom  |-  ( A  e.  V  ->  ( om  X.  A )  ~<_  U_ n  e.  om  ( A  ^m  n ) )
Distinct variable group:    A, n
Allowed substitution hint:    V( n)

Proof of Theorem fseqdom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 8148 . . 3  |-  om  e.  _V
2 ovex 6333 . . 3  |-  ( A  ^m  n )  e. 
_V
31, 2iunex 6787 . 2  |-  U_ n  e.  om  ( A  ^m  n )  e.  _V
4 xp1st 6837 . . . . . . . 8  |-  ( x  e.  ( om  X.  A )  ->  ( 1st `  x )  e. 
om )
5 peano2 6727 . . . . . . . 8  |-  ( ( 1st `  x )  e.  om  ->  suc  ( 1st `  x )  e.  om )
64, 5syl 17 . . . . . . 7  |-  ( x  e.  ( om  X.  A )  ->  suc  ( 1st `  x )  e.  om )
76adantl 467 . . . . . 6  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  ->  suc  ( 1st `  x
)  e.  om )
8 xp2nd 6838 . . . . . . . . 9  |-  ( x  e.  ( om  X.  A )  ->  ( 2nd `  x )  e.  A )
98adantl 467 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( 2nd `  x
)  e.  A )
10 fconst6g 5789 . . . . . . . 8  |-  ( ( 2nd `  x )  e.  A  ->  ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } ) : suc  ( 1st `  x ) --> A )
119, 10syl 17 . . . . . . 7  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } ) : suc  ( 1st `  x
) --> A )
12 elmapg 7493 . . . . . . . 8  |-  ( ( A  e.  V  /\  suc  ( 1st `  x
)  e.  om )  ->  ( ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  e.  ( A  ^m  suc  ( 1st `  x ) )  <->  ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } ) : suc  ( 1st `  x
) --> A ) )
136, 12sylan2 476 . . . . . . 7  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  e.  ( A  ^m  suc  ( 1st `  x ) )  <->  ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } ) : suc  ( 1st `  x
) --> A ) )
1411, 13mpbird 235 . . . . . 6  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } )  e.  ( A  ^m  suc  ( 1st `  x ) ) )
15 oveq2 6313 . . . . . . . 8  |-  ( n  =  suc  ( 1st `  x )  ->  ( A  ^m  n )  =  ( A  ^m  suc  ( 1st `  x ) ) )
1615eleq2d 2499 . . . . . . 7  |-  ( n  =  suc  ( 1st `  x )  ->  (
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } )  e.  ( A  ^m  n
)  <->  ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  e.  ( A  ^m  suc  ( 1st `  x ) ) ) )
1716rspcev 3188 . . . . . 6  |-  ( ( suc  ( 1st `  x
)  e.  om  /\  ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  e.  ( A  ^m  suc  ( 1st `  x ) ) )  ->  E. n  e.  om  ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  e.  ( A  ^m  n
) )
187, 14, 17syl2anc 665 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  ->  E. n  e.  om  ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  e.  ( A  ^m  n ) )
19 eliun 4307 . . . . 5  |-  ( ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  e.  U_ n  e.  om  ( A  ^m  n )  <->  E. n  e.  om  ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  e.  ( A  ^m  n
) )
2018, 19sylibr 215 . . . 4  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } )  e. 
U_ n  e.  om  ( A  ^m  n
) )
2120ex 435 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( om 
X.  A )  -> 
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } )  e. 
U_ n  e.  om  ( A  ^m  n
) ) )
22 nsuceq0 5522 . . . . . . 7  |-  suc  ( 1st `  x )  =/=  (/)
23 fvex 5891 . . . . . . . 8  |-  ( 2nd `  x )  e.  _V
2423snnz 4121 . . . . . . 7  |-  { ( 2nd `  x ) }  =/=  (/)
25 xp11 5292 . . . . . . 7  |-  ( ( suc  ( 1st `  x
)  =/=  (/)  /\  {
( 2nd `  x
) }  =/=  (/) )  -> 
( ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  =  ( suc  ( 1st `  y )  X.  {
( 2nd `  y
) } )  <->  ( suc  ( 1st `  x )  =  suc  ( 1st `  y )  /\  {
( 2nd `  x
) }  =  {
( 2nd `  y
) } ) ) )
2622, 24, 25mp2an 676 . . . . . 6  |-  ( ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  =  ( suc  ( 1st `  y
)  X.  { ( 2nd `  y ) } )  <->  ( suc  ( 1st `  x )  =  suc  ( 1st `  y )  /\  {
( 2nd `  x
) }  =  {
( 2nd `  y
) } ) )
27 xp1st 6837 . . . . . . . . 9  |-  ( y  e.  ( om  X.  A )  ->  ( 1st `  y )  e. 
om )
28 peano4 6729 . . . . . . . . 9  |-  ( ( ( 1st `  x
)  e.  om  /\  ( 1st `  y )  e.  om )  -> 
( suc  ( 1st `  x )  =  suc  ( 1st `  y )  <-> 
( 1st `  x
)  =  ( 1st `  y ) ) )
294, 27, 28syl2an 479 . . . . . . . 8  |-  ( ( x  e.  ( om 
X.  A )  /\  y  e.  ( om  X.  A ) )  -> 
( suc  ( 1st `  x )  =  suc  ( 1st `  y )  <-> 
( 1st `  x
)  =  ( 1st `  y ) ) )
3029adantl 467 . . . . . . 7  |-  ( ( A  e.  V  /\  ( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) ) )  ->  ( suc  ( 1st `  x )  =  suc  ( 1st `  y
)  <->  ( 1st `  x
)  =  ( 1st `  y ) ) )
31 sneqbg 4173 . . . . . . . 8  |-  ( ( 2nd `  x )  e.  _V  ->  ( { ( 2nd `  x
) }  =  {
( 2nd `  y
) }  <->  ( 2nd `  x )  =  ( 2nd `  y ) ) )
3223, 31mp1i 13 . . . . . . 7  |-  ( ( A  e.  V  /\  ( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) ) )  ->  ( { ( 2nd `  x ) }  =  { ( 2nd `  y ) }  <->  ( 2nd `  x
)  =  ( 2nd `  y ) ) )
3330, 32anbi12d 715 . . . . . 6  |-  ( ( A  e.  V  /\  ( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) ) )  ->  ( ( suc  ( 1st `  x
)  =  suc  ( 1st `  y )  /\  { ( 2nd `  x
) }  =  {
( 2nd `  y
) } )  <->  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  =  ( 2nd `  y ) ) ) )
3426, 33syl5bb 260 . . . . 5  |-  ( ( A  e.  V  /\  ( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) ) )  ->  ( ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  =  ( suc  ( 1st `  y
)  X.  { ( 2nd `  y ) } )  <->  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  =  ( 2nd `  y ) ) ) )
35 xpopth 6846 . . . . . 6  |-  ( ( x  e.  ( om 
X.  A )  /\  y  e.  ( om  X.  A ) )  -> 
( ( ( 1st `  x )  =  ( 1st `  y )  /\  ( 2nd `  x
)  =  ( 2nd `  y ) )  <->  x  =  y ) )
3635adantl 467 . . . . 5  |-  ( ( A  e.  V  /\  ( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) ) )  ->  ( ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  =  ( 2nd `  y ) )  <->  x  =  y
) )
3734, 36bitrd 256 . . . 4  |-  ( ( A  e.  V  /\  ( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) ) )  ->  ( ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  =  ( suc  ( 1st `  y
)  X.  { ( 2nd `  y ) } )  <->  x  =  y ) )
3837ex 435 . . 3  |-  ( A  e.  V  ->  (
( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) )  ->  ( ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  =  ( suc  ( 1st `  y
)  X.  { ( 2nd `  y ) } )  <->  x  =  y ) ) )
3921, 38dom2d 7617 . 2  |-  ( A  e.  V  ->  ( U_ n  e.  om  ( A  ^m  n
)  e.  _V  ->  ( om  X.  A )  ~<_ 
U_ n  e.  om  ( A  ^m  n
) ) )
403, 39mpi 21 1  |-  ( A  e.  V  ->  ( om  X.  A )  ~<_  U_ n  e.  om  ( A  ^m  n ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625   E.wrex 2783   _Vcvv 3087   (/)c0 3767   {csn 4002   U_ciun 4302   class class class wbr 4426    X. cxp 4852   suc csuc 5444   -->wf 5597   ` cfv 5601  (class class class)co 6305   omcom 6706   1stc1st 6805   2ndc2nd 6806    ^m cmap 7480    ~<_ cdom 7575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-map 7482  df-dom 7579
This theorem is referenced by:  fseqen  8456
  Copyright terms: Public domain W3C validator