MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqdom Structured version   Unicode version

Theorem fseqdom 8192
Description: One half of fseqen 8193. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
fseqdom  |-  ( A  e.  V  ->  ( om  X.  A )  ~<_  U_ n  e.  om  ( A  ^m  n ) )
Distinct variable group:    A, n
Allowed substitution hint:    V( n)

Proof of Theorem fseqdom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 7845 . . 3  |-  om  e.  _V
2 ovex 6115 . . 3  |-  ( A  ^m  n )  e. 
_V
31, 2iunex 6556 . 2  |-  U_ n  e.  om  ( A  ^m  n )  e.  _V
4 xp1st 6605 . . . . . . . 8  |-  ( x  e.  ( om  X.  A )  ->  ( 1st `  x )  e. 
om )
5 peano2 6495 . . . . . . . 8  |-  ( ( 1st `  x )  e.  om  ->  suc  ( 1st `  x )  e.  om )
64, 5syl 16 . . . . . . 7  |-  ( x  e.  ( om  X.  A )  ->  suc  ( 1st `  x )  e.  om )
76adantl 463 . . . . . 6  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  ->  suc  ( 1st `  x
)  e.  om )
8 xp2nd 6606 . . . . . . . . 9  |-  ( x  e.  ( om  X.  A )  ->  ( 2nd `  x )  e.  A )
98adantl 463 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( 2nd `  x
)  e.  A )
10 fconst6g 5596 . . . . . . . 8  |-  ( ( 2nd `  x )  e.  A  ->  ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } ) : suc  ( 1st `  x ) --> A )
119, 10syl 16 . . . . . . 7  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } ) : suc  ( 1st `  x
) --> A )
12 elmapg 7223 . . . . . . . 8  |-  ( ( A  e.  V  /\  suc  ( 1st `  x
)  e.  om )  ->  ( ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  e.  ( A  ^m  suc  ( 1st `  x ) )  <->  ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } ) : suc  ( 1st `  x
) --> A ) )
136, 12sylan2 471 . . . . . . 7  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  e.  ( A  ^m  suc  ( 1st `  x ) )  <->  ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } ) : suc  ( 1st `  x
) --> A ) )
1411, 13mpbird 232 . . . . . 6  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } )  e.  ( A  ^m  suc  ( 1st `  x ) ) )
15 oveq2 6098 . . . . . . . 8  |-  ( n  =  suc  ( 1st `  x )  ->  ( A  ^m  n )  =  ( A  ^m  suc  ( 1st `  x ) ) )
1615eleq2d 2508 . . . . . . 7  |-  ( n  =  suc  ( 1st `  x )  ->  (
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } )  e.  ( A  ^m  n
)  <->  ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  e.  ( A  ^m  suc  ( 1st `  x ) ) ) )
1716rspcev 3070 . . . . . 6  |-  ( ( suc  ( 1st `  x
)  e.  om  /\  ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  e.  ( A  ^m  suc  ( 1st `  x ) ) )  ->  E. n  e.  om  ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  e.  ( A  ^m  n
) )
187, 14, 17syl2anc 656 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  ->  E. n  e.  om  ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  e.  ( A  ^m  n ) )
19 eliun 4172 . . . . 5  |-  ( ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  e.  U_ n  e.  om  ( A  ^m  n )  <->  E. n  e.  om  ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  e.  ( A  ^m  n
) )
2018, 19sylibr 212 . . . 4  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } )  e. 
U_ n  e.  om  ( A  ^m  n
) )
2120ex 434 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( om 
X.  A )  -> 
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } )  e. 
U_ n  e.  om  ( A  ^m  n
) ) )
22 nsuceq0 4795 . . . . . . 7  |-  suc  ( 1st `  x )  =/=  (/)
23 fvex 5698 . . . . . . . 8  |-  ( 2nd `  x )  e.  _V
2423snnz 3990 . . . . . . 7  |-  { ( 2nd `  x ) }  =/=  (/)
25 xp11 5270 . . . . . . 7  |-  ( ( suc  ( 1st `  x
)  =/=  (/)  /\  {
( 2nd `  x
) }  =/=  (/) )  -> 
( ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  =  ( suc  ( 1st `  y )  X.  {
( 2nd `  y
) } )  <->  ( suc  ( 1st `  x )  =  suc  ( 1st `  y )  /\  {
( 2nd `  x
) }  =  {
( 2nd `  y
) } ) ) )
2622, 24, 25mp2an 667 . . . . . 6  |-  ( ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  =  ( suc  ( 1st `  y
)  X.  { ( 2nd `  y ) } )  <->  ( suc  ( 1st `  x )  =  suc  ( 1st `  y )  /\  {
( 2nd `  x
) }  =  {
( 2nd `  y
) } ) )
27 xp1st 6605 . . . . . . . . 9  |-  ( y  e.  ( om  X.  A )  ->  ( 1st `  y )  e. 
om )
28 peano4 6497 . . . . . . . . 9  |-  ( ( ( 1st `  x
)  e.  om  /\  ( 1st `  y )  e.  om )  -> 
( suc  ( 1st `  x )  =  suc  ( 1st `  y )  <-> 
( 1st `  x
)  =  ( 1st `  y ) ) )
294, 27, 28syl2an 474 . . . . . . . 8  |-  ( ( x  e.  ( om 
X.  A )  /\  y  e.  ( om  X.  A ) )  -> 
( suc  ( 1st `  x )  =  suc  ( 1st `  y )  <-> 
( 1st `  x
)  =  ( 1st `  y ) ) )
3029adantl 463 . . . . . . 7  |-  ( ( A  e.  V  /\  ( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) ) )  ->  ( suc  ( 1st `  x )  =  suc  ( 1st `  y
)  <->  ( 1st `  x
)  =  ( 1st `  y ) ) )
31 sneqbg 4040 . . . . . . . 8  |-  ( ( 2nd `  x )  e.  _V  ->  ( { ( 2nd `  x
) }  =  {
( 2nd `  y
) }  <->  ( 2nd `  x )  =  ( 2nd `  y ) ) )
3223, 31mp1i 12 . . . . . . 7  |-  ( ( A  e.  V  /\  ( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) ) )  ->  ( { ( 2nd `  x ) }  =  { ( 2nd `  y ) }  <->  ( 2nd `  x
)  =  ( 2nd `  y ) ) )
3330, 32anbi12d 705 . . . . . 6  |-  ( ( A  e.  V  /\  ( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) ) )  ->  ( ( suc  ( 1st `  x
)  =  suc  ( 1st `  y )  /\  { ( 2nd `  x
) }  =  {
( 2nd `  y
) } )  <->  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  =  ( 2nd `  y ) ) ) )
3426, 33syl5bb 257 . . . . 5  |-  ( ( A  e.  V  /\  ( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) ) )  ->  ( ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  =  ( suc  ( 1st `  y
)  X.  { ( 2nd `  y ) } )  <->  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  =  ( 2nd `  y ) ) ) )
35 xpopth 6614 . . . . . 6  |-  ( ( x  e.  ( om 
X.  A )  /\  y  e.  ( om  X.  A ) )  -> 
( ( ( 1st `  x )  =  ( 1st `  y )  /\  ( 2nd `  x
)  =  ( 2nd `  y ) )  <->  x  =  y ) )
3635adantl 463 . . . . 5  |-  ( ( A  e.  V  /\  ( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) ) )  ->  ( ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  =  ( 2nd `  y ) )  <->  x  =  y
) )
3734, 36bitrd 253 . . . 4  |-  ( ( A  e.  V  /\  ( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) ) )  ->  ( ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  =  ( suc  ( 1st `  y
)  X.  { ( 2nd `  y ) } )  <->  x  =  y ) )
3837ex 434 . . 3  |-  ( A  e.  V  ->  (
( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) )  ->  ( ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  =  ( suc  ( 1st `  y
)  X.  { ( 2nd `  y ) } )  <->  x  =  y ) ) )
3921, 38dom2d 7346 . 2  |-  ( A  e.  V  ->  ( U_ n  e.  om  ( A  ^m  n
)  e.  _V  ->  ( om  X.  A )  ~<_ 
U_ n  e.  om  ( A  ^m  n
) ) )
403, 39mpi 17 1  |-  ( A  e.  V  ->  ( om  X.  A )  ~<_  U_ n  e.  om  ( A  ^m  n ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   E.wrex 2714   _Vcvv 2970   (/)c0 3634   {csn 3874   U_ciun 4168   class class class wbr 4289   suc csuc 4717    X. cxp 4834   -->wf 5411   ` cfv 5415  (class class class)co 6090   omcom 6475   1stc1st 6574   2ndc2nd 6575    ^m cmap 7210    ~<_ cdom 7304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-map 7212  df-dom 7308
This theorem is referenced by:  fseqen  8193
  Copyright terms: Public domain W3C validator