MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseq1p1m1 Structured version   Visualization version   Unicode version

Theorem fseq1p1m1 11894
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.)
Hypothesis
Ref Expression
fseq1p1m1.1  |-  H  =  { <. ( N  + 
1 ) ,  B >. }
Assertion
Ref Expression
fseq1p1m1  |-  ( N  e.  NN0  ->  ( ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
)  <->  ( G :
( 1 ... ( N  +  1 ) ) --> A  /\  ( G `  ( N  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... N
) ) ) ) )

Proof of Theorem fseq1p1m1
StepHypRef Expression
1 simpr1 1036 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  F : ( 1 ... N ) --> A )
2 nn0p1nn 10933 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
32adantr 472 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( N  +  1 )  e.  NN )
4 simpr2 1037 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  B  e.  A )
5 fseq1p1m1.1 . . . . . . . . 9  |-  H  =  { <. ( N  + 
1 ) ,  B >. }
6 fsng 6079 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  NN  /\  B  e.  A )  ->  ( H : {
( N  +  1 ) } --> { B } 
<->  H  =  { <. ( N  +  1 ) ,  B >. } ) )
75, 6mpbiri 241 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  NN  /\  B  e.  A )  ->  H : { ( N  +  1 ) } --> { B }
)
83, 4, 7syl2anc 673 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  H : { ( N  + 
1 ) } --> { B } )
94snssd 4108 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  { B }  C_  A )
108, 9fssd 5750 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  H : { ( N  + 
1 ) } --> A )
11 fzp1disj 11880 . . . . . . 7  |-  ( ( 1 ... N )  i^i  { ( N  +  1 ) } )  =  (/)
1211a1i 11 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( 1 ... N
)  i^i  { ( N  +  1 ) } )  =  (/) )
13 fun2 5759 . . . . . 6  |-  ( ( ( F : ( 1 ... N ) --> A  /\  H : { ( N  + 
1 ) } --> A )  /\  ( ( 1 ... N )  i^i 
{ ( N  + 
1 ) } )  =  (/) )  ->  ( F  u.  H ) : ( ( 1 ... N )  u. 
{ ( N  + 
1 ) } ) --> A )
141, 10, 12, 13syl21anc 1291 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( F  u.  H ) : ( ( 1 ... N )  u. 
{ ( N  + 
1 ) } ) --> A )
15 1z 10991 . . . . . . . 8  |-  1  e.  ZZ
16 simpl 464 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  N  e.  NN0 )
17 nn0uz 11217 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
18 1m1e0 10700 . . . . . . . . . . 11  |-  ( 1  -  1 )  =  0
1918fveq2i 5882 . . . . . . . . . 10  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
2017, 19eqtr4i 2496 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
2116, 20syl6eleq 2559 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  N  e.  ( ZZ>= `  ( 1  -  1 ) ) )
22 fzsuc2 11879 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  N  e.  ( ZZ>= `  ( 1  -  1 ) ) )  -> 
( 1 ... ( N  +  1 ) )  =  ( ( 1 ... N )  u.  { ( N  +  1 ) } ) )
2315, 21, 22sylancr 676 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
1 ... ( N  + 
1 ) )  =  ( ( 1 ... N )  u.  {
( N  +  1 ) } ) )
2423eqcomd 2477 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( 1 ... N
)  u.  { ( N  +  1 ) } )  =  ( 1 ... ( N  +  1 ) ) )
2524feq2d 5725 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  u.  H
) : ( ( 1 ... N )  u.  { ( N  +  1 ) } ) --> A  <->  ( F  u.  H ) : ( 1 ... ( N  +  1 ) ) --> A ) )
2614, 25mpbid 215 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( F  u.  H ) : ( 1 ... ( N  +  1 ) ) --> A )
27 simpr3 1038 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  G  =  ( F  u.  H ) )
2827feq1d 5724 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G : ( 1 ... ( N  +  1 ) ) --> A  <->  ( F  u.  H ) : ( 1 ... ( N  +  1 ) ) --> A ) )
2926, 28mpbird 240 . . 3  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  G : ( 1 ... ( N  +  1 ) ) --> A )
30 ovex 6336 . . . . . 6  |-  ( N  +  1 )  e. 
_V
3130snid 3988 . . . . 5  |-  ( N  +  1 )  e. 
{ ( N  + 
1 ) }
32 fvres 5893 . . . . 5  |-  ( ( N  +  1 )  e.  { ( N  +  1 ) }  ->  ( ( G  |`  { ( N  + 
1 ) } ) `
 ( N  + 
1 ) )  =  ( G `  ( N  +  1 ) ) )
3331, 32ax-mp 5 . . . 4  |-  ( ( G  |`  { ( N  +  1 ) } ) `  ( N  +  1 ) )  =  ( G `
 ( N  + 
1 ) )
3427reseq1d 5110 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G  |`  { ( N  +  1 ) } )  =  ( ( F  u.  H )  |`  { ( N  + 
1 ) } ) )
35 ffn 5739 . . . . . . . . . . 11  |-  ( F : ( 1 ... N ) --> A  ->  F  Fn  ( 1 ... N ) )
36 fnresdisj 5696 . . . . . . . . . . 11  |-  ( F  Fn  ( 1 ... N )  ->  (
( ( 1 ... N )  i^i  {
( N  +  1 ) } )  =  (/) 
<->  ( F  |`  { ( N  +  1 ) } )  =  (/) ) )
371, 35, 363syl 18 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( ( 1 ... N )  i^i  {
( N  +  1 ) } )  =  (/) 
<->  ( F  |`  { ( N  +  1 ) } )  =  (/) ) )
3812, 37mpbid 215 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( F  |`  { ( N  +  1 ) } )  =  (/) )
3938uneq1d 3578 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  |`  { ( N  +  1 ) } )  u.  ( H  |`  { ( N  +  1 ) } ) )  =  (
(/)  u.  ( H  |` 
{ ( N  + 
1 ) } ) ) )
40 resundir 5125 . . . . . . . 8  |-  ( ( F  u.  H )  |`  { ( N  + 
1 ) } )  =  ( ( F  |`  { ( N  + 
1 ) } )  u.  ( H  |`  { ( N  + 
1 ) } ) )
41 uncom 3569 . . . . . . . . 9  |-  ( (/)  u.  ( H  |`  { ( N  +  1 ) } ) )  =  ( ( H  |`  { ( N  + 
1 ) } )  u.  (/) )
42 un0 3762 . . . . . . . . 9  |-  ( ( H  |`  { ( N  +  1 ) } )  u.  (/) )  =  ( H  |`  { ( N  +  1 ) } )
4341, 42eqtr2i 2494 . . . . . . . 8  |-  ( H  |`  { ( N  + 
1 ) } )  =  ( (/)  u.  ( H  |`  { ( N  +  1 ) } ) )
4439, 40, 433eqtr4g 2530 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  u.  H
)  |`  { ( N  +  1 ) } )  =  ( H  |`  { ( N  + 
1 ) } ) )
45 ffn 5739 . . . . . . . 8  |-  ( H : { ( N  +  1 ) } --> A  ->  H  Fn  { ( N  +  1 ) } )
46 fnresdm 5695 . . . . . . . 8  |-  ( H  Fn  { ( N  +  1 ) }  ->  ( H  |`  { ( N  + 
1 ) } )  =  H )
4710, 45, 463syl 18 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( H  |`  { ( N  +  1 ) } )  =  H )
4834, 44, 473eqtrd 2509 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G  |`  { ( N  +  1 ) } )  =  H )
4948fveq1d 5881 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( G  |`  { ( N  +  1 ) } ) `  ( N  +  1 ) )  =  ( H `
 ( N  + 
1 ) ) )
505fveq1i 5880 . . . . . . 7  |-  ( H `
 ( N  + 
1 ) )  =  ( { <. ( N  +  1 ) ,  B >. } `  ( N  +  1
) )
51 fvsng 6114 . . . . . . 7  |-  ( ( ( N  +  1 )  e.  NN  /\  B  e.  A )  ->  ( { <. ( N  +  1 ) ,  B >. } `  ( N  +  1
) )  =  B )
5250, 51syl5eq 2517 . . . . . 6  |-  ( ( ( N  +  1 )  e.  NN  /\  B  e.  A )  ->  ( H `  ( N  +  1 ) )  =  B )
533, 4, 52syl2anc 673 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( H `  ( N  +  1 ) )  =  B )
5449, 53eqtrd 2505 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( G  |`  { ( N  +  1 ) } ) `  ( N  +  1 ) )  =  B )
5533, 54syl5eqr 2519 . . 3  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G `  ( N  +  1 ) )  =  B )
5627reseq1d 5110 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G  |`  ( 1 ... N ) )  =  ( ( F  u.  H )  |`  (
1 ... N ) ) )
57 incom 3616 . . . . . . . 8  |-  ( { ( N  +  1 ) }  i^i  (
1 ... N ) )  =  ( ( 1 ... N )  i^i 
{ ( N  + 
1 ) } )
5857, 12syl5eq 2517 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( { ( N  + 
1 ) }  i^i  ( 1 ... N
) )  =  (/) )
59 ffn 5739 . . . . . . . 8  |-  ( H : { ( N  +  1 ) } --> { B }  ->  H  Fn  { ( N  +  1 ) } )
60 fnresdisj 5696 . . . . . . . 8  |-  ( H  Fn  { ( N  +  1 ) }  ->  ( ( { ( N  +  1 ) }  i^i  (
1 ... N ) )  =  (/)  <->  ( H  |`  ( 1 ... N
) )  =  (/) ) )
618, 59, 603syl 18 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( { ( N  +  1 ) }  i^i  ( 1 ... N ) )  =  (/) 
<->  ( H  |`  (
1 ... N ) )  =  (/) ) )
6258, 61mpbid 215 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( H  |`  ( 1 ... N ) )  =  (/) )
6362uneq2d 3579 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  |`  (
1 ... N ) )  u.  ( H  |`  ( 1 ... N
) ) )  =  ( ( F  |`  ( 1 ... N
) )  u.  (/) ) )
64 resundir 5125 . . . . 5  |-  ( ( F  u.  H )  |`  ( 1 ... N
) )  =  ( ( F  |`  (
1 ... N ) )  u.  ( H  |`  ( 1 ... N
) ) )
65 un0 3762 . . . . . 6  |-  ( ( F  |`  ( 1 ... N ) )  u.  (/) )  =  ( F  |`  ( 1 ... N ) )
6665eqcomi 2480 . . . . 5  |-  ( F  |`  ( 1 ... N
) )  =  ( ( F  |`  (
1 ... N ) )  u.  (/) )
6763, 64, 663eqtr4g 2530 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  u.  H
)  |`  ( 1 ... N ) )  =  ( F  |`  (
1 ... N ) ) )
68 fnresdm 5695 . . . . 5  |-  ( F  Fn  ( 1 ... N )  ->  ( F  |`  ( 1 ... N ) )  =  F )
691, 35, 683syl 18 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( F  |`  ( 1 ... N ) )  =  F )
7056, 67, 693eqtrrd 2510 . . 3  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  F  =  ( G  |`  ( 1 ... N
) ) )
7129, 55, 703jca 1210 . 2  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G : ( 1 ... ( N  +  1 ) ) --> A  /\  ( G `  ( N  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... N
) ) ) )
72 simpr1 1036 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  G : ( 1 ... ( N  +  1 ) ) --> A )
73 fzssp1 11867 . . . . 5  |-  ( 1 ... N )  C_  ( 1 ... ( N  +  1 ) )
74 fssres 5761 . . . . 5  |-  ( ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( 1 ... N )  C_  (
1 ... ( N  + 
1 ) ) )  ->  ( G  |`  ( 1 ... N
) ) : ( 1 ... N ) --> A )
7572, 73, 74sylancl 675 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  ( 1 ... N ) ) : ( 1 ... N
) --> A )
76 simpr3 1038 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  F  =  ( G  |`  ( 1 ... N
) ) )
7776feq1d 5724 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( F : ( 1 ... N ) --> A  <->  ( G  |`  ( 1 ... N
) ) : ( 1 ... N ) --> A ) )
7875, 77mpbird 240 . . 3  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  F : ( 1 ... N ) --> A )
79 simpr2 1037 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G `  ( N  +  1 ) )  =  B )
802adantr 472 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( N  +  1 )  e.  NN )
81 nnuz 11218 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
8280, 81syl6eleq 2559 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( N  +  1 )  e.  ( ZZ>= `  1
) )
83 eluzfz2 11833 . . . . . 6  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
8482, 83syl 17 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
8572, 84ffvelrnd 6038 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G `  ( N  +  1 ) )  e.  A )
8679, 85eqeltrrd 2550 . . 3  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  B  e.  A )
87 ffn 5739 . . . . . . . . 9  |-  ( G : ( 1 ... ( N  +  1 ) ) --> A  ->  G  Fn  ( 1 ... ( N  + 
1 ) ) )
8872, 87syl 17 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  G  Fn  ( 1 ... ( N  +  1 ) ) )
89 fnressn 6092 . . . . . . . 8  |-  ( ( G  Fn  ( 1 ... ( N  + 
1 ) )  /\  ( N  +  1
)  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( G  |`  { ( N  + 
1 ) } )  =  { <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >. } )
9088, 84, 89syl2anc 673 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  { ( N  +  1 ) } )  =  { <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >. } )
91 opeq2 4159 . . . . . . . . 9  |-  ( ( G `  ( N  +  1 ) )  =  B  ->  <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >.  =  <. ( N  +  1 ) ,  B >. )
9291sneqd 3971 . . . . . . . 8  |-  ( ( G `  ( N  +  1 ) )  =  B  ->  { <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >. }  =  { <. ( N  + 
1 ) ,  B >. } )
9379, 92syl 17 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  { <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >. }  =  { <. ( N  + 
1 ) ,  B >. } )
9490, 93eqtrd 2505 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  { ( N  +  1 ) } )  =  { <. ( N  +  1 ) ,  B >. } )
9594, 5syl6reqr 2524 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  H  =  ( G  |`  { ( N  + 
1 ) } ) )
9676, 95uneq12d 3580 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( F  u.  H )  =  ( ( G  |`  ( 1 ... N
) )  u.  ( G  |`  { ( N  +  1 ) } ) ) )
97 simpl 464 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  N  e.  NN0 )
9897, 20syl6eleq 2559 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  N  e.  ( ZZ>= `  ( 1  -  1 ) ) )
9915, 98, 22sylancr 676 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  (
1 ... ( N  + 
1 ) )  =  ( ( 1 ... N )  u.  {
( N  +  1 ) } ) )
10099reseq2d 5111 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  ( 1 ... ( N  +  1 ) ) )  =  ( G  |`  (
( 1 ... N
)  u.  { ( N  +  1 ) } ) ) )
101 resundi 5124 . . . . 5  |-  ( G  |`  ( ( 1 ... N )  u.  {
( N  +  1 ) } ) )  =  ( ( G  |`  ( 1 ... N
) )  u.  ( G  |`  { ( N  +  1 ) } ) )
102100, 101syl6req 2522 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  (
( G  |`  (
1 ... N ) )  u.  ( G  |`  { ( N  + 
1 ) } ) )  =  ( G  |`  ( 1 ... ( N  +  1 ) ) ) )
103 fnresdm 5695 . . . . 5  |-  ( G  Fn  ( 1 ... ( N  +  1 ) )  ->  ( G  |`  ( 1 ... ( N  +  1 ) ) )  =  G )
10472, 87, 1033syl 18 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  ( 1 ... ( N  +  1 ) ) )  =  G )
10596, 102, 1043eqtrrd 2510 . . 3  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  G  =  ( F  u.  H ) )
10678, 86, 1053jca 1210 . 2  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H ) ) )
10771, 106impbida 850 1  |-  ( N  e.  NN0  ->  ( ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
)  <->  ( G :
( 1 ... ( N  +  1 ) ) --> A  /\  ( G `  ( N  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... N
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   {csn 3959   <.cop 3965    |` cres 4841    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308   0cc0 9557   1c1 9558    + caddc 9560    - cmin 9880   NNcn 10631   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   ...cfz 11810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811
This theorem is referenced by:  fseq1m1p1  11895
  Copyright terms: Public domain W3C validator