Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fscgr Structured version   Unicode version

Theorem fscgr 29307
Description: Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.)
Assertion
Ref Expression
fscgr  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  D >. >.  FiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >.  /\  A  =/=  B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )

Proof of Theorem fscgr
StepHypRef Expression
1 brfs 29306 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  B >. ,  <. C ,  D >. >.  FiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >. 
<->  ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) ) ) )
21anbi1d 704 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  D >. >.  FiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >.  /\  A  =/=  B )  <->  ( ( A 
Colinear 
<. B ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B ) ) )
3 simp11 1026 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  N  e.  NN )
4 simp12 1027 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
5 simp13 1028 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
6 simp21 1029 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
7 brcolinear 29286 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
83, 4, 5, 6, 7syl13anc 1230 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  Colinear  <. B ,  C >.  <-> 
( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
9 simp23 1031 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
10 simp31 1032 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
11 simp32 1033 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  G  e.  ( EE `  N
) )
12 cgr3permute2 29276 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  G  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  <->  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >. ) )
133, 4, 5, 6, 9, 10, 11, 12syl133anc 1251 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  <->  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >. ) )
14 ancom 450 . . . . . . . . . . . . 13  |-  ( (
<. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  <-> 
( <. B ,  D >.Cgr
<. F ,  H >.  /\ 
<. A ,  D >.Cgr <. E ,  H >. ) )
1514a1i 11 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. A ,  D >.Cgr
<. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  <-> 
( <. B ,  D >.Cgr
<. F ,  H >.  /\ 
<. A ,  D >.Cgr <. E ,  H >. ) ) )
1613, 153anbi23d 1302 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  ( A  Btwn  <. B ,  C >.  /\  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >.  /\  ( <. B ,  D >.Cgr
<. F ,  H >.  /\ 
<. A ,  D >.Cgr <. E ,  H >. ) ) ) )
17 simp22 1030 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
18 simp33 1034 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  H  e.  ( EE `  N
) )
19 brofs2 29304 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N )  /\  A  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >. 
<->  ( A  Btwn  <. B ,  C >.  /\  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >.  /\  ( <. B ,  D >.Cgr <. F ,  H >.  /\  <. A ,  D >.Cgr <. E ,  H >. ) ) ) )
203, 5, 4, 6, 17, 10, 9, 11, 18, 19syl333anc 1260 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >. 
<->  ( A  Btwn  <. B ,  C >.  /\  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >.  /\  ( <. B ,  D >.Cgr <. F ,  H >.  /\  <. A ,  D >.Cgr <. E ,  H >. ) ) ) )
2116, 20bitr4d 256 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >. ) )
22 necom 2736 . . . . . . . . . . 11  |-  ( A  =/=  B  <->  B  =/=  A )
2322a1i 11 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  =/=  B  <->  B  =/=  A ) )
2421, 23anbi12d 710 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( A  Btwn  <. B ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  <->  ( <. <. B ,  A >. , 
<. C ,  D >. >.  OuterFiveSeg  <. <. F ,  E >. , 
<. G ,  H >. >.  /\  B  =/=  A
) ) )
25 5segofs 29233 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N )  /\  A  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >.  /\  B  =/=  A )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
263, 5, 4, 6, 17, 10, 9, 11, 18, 25syl333anc 1260 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >.  /\  B  =/=  A )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
2724, 26sylbid 215 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( A  Btwn  <. B ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
2827expd 436 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  ( A  =/=  B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) )
29283expd 1213 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  Btwn  <. B ,  C >.  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
30 btwncom 29241 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. C ,  A >. 
<->  B  Btwn  <. A ,  C >. ) )
313, 5, 6, 4, 30syl13anc 1230 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( B  Btwn  <. C ,  A >.  <-> 
B  Btwn  <. A ,  C >. ) )
32313anbi1d 1303 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. C ,  A >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr
<. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) ) ) )
33 brofs2 29304 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  B >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >. 
<->  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) ) ) )
3432, 33bitr4d 256 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. C ,  A >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  <. <. A ,  B >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >. ) )
3534anbi1d 704 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. C ,  A >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  <->  ( <. <. A ,  B >. , 
<. C ,  D >. >.  OuterFiveSeg  <. <. E ,  F >. , 
<. G ,  H >. >.  /\  A  =/=  B
) ) )
36 5segofs 29233 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >.  /\  A  =/=  B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
3735, 36sylbid 215 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. C ,  A >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
3837expd 436 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. C ,  A >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  ( A  =/=  B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) )
39383expd 1213 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( B  Btwn  <. C ,  A >.  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
40 cgr3permute1 29275 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  G  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  <->  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >. ) )
413, 4, 5, 6, 9, 10, 11, 40syl133anc 1251 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  <->  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >. ) )
42413anbi2d 1304 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. A ,  B >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  ( C  Btwn  <. A ,  B >.  /\  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >.  /\  ( <. A ,  D >.Cgr
<. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) ) ) )
43 brifs2 29305 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >. 
<->  ( C  Btwn  <. A ,  B >.  /\  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) ) ) )
443, 4, 6, 5, 17, 9, 11, 10, 18, 43syl333anc 1260 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >. 
<->  ( C  Btwn  <. A ,  B >.  /\  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) ) ) )
4542, 44bitr4d 256 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. A ,  B >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >. ) )
46 ifscgr 29271 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >.  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
473, 4, 6, 5, 17, 9, 11, 10, 18, 46syl333anc 1260 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >.  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
4845, 47sylbid 215 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. A ,  B >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
4948a1dd 46 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. A ,  B >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  ( A  =/=  B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) )
50493expd 1213 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( C  Btwn  <. A ,  B >.  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
5129, 39, 503jaod 1292 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  (
( <. A ,  D >.Cgr
<. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
528, 51sylbid 215 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  Colinear  <. B ,  C >.  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
53523impd 1210 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  ( A  =/=  B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) )
5453impd 431 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
552, 54sylbid 215 1  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  D >. >.  FiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >.  /\  A  =/=  B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 972    /\ w3a 973    e. wcel 1767    =/= wne 2662   <.cop 4033   class class class wbr 4447   ` cfv 5586   NNcn 10532   EEcee 23867    Btwn cbtwn 23868  Cgrccgr 23869    OuterFiveSeg cofs 29209    InnerFiveSeg cifs 29262  Cgr3ccgr3 29263    Colinear ccolin 29264    FiveSeg cfs 29265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-sum 13468  df-ee 23870  df-btwn 23871  df-cgr 23872  df-ofs 29210  df-colinear 29266  df-ifs 29267  df-cgr3 29268  df-fs 29269
This theorem is referenced by:  linecgr  29308
  Copyright terms: Public domain W3C validator