MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsucmptn Structured version   Unicode version

Theorem frsucmptn 6906
Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class 
D is a proper class). This is a technical lemma that can be used together with frsucmpt 6905 to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
frsucmpt.1  |-  F/_ x A
frsucmpt.2  |-  F/_ x B
frsucmpt.3  |-  F/_ x D
frsucmpt.4  |-  F  =  ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )
frsucmpt.5  |-  ( x  =  ( F `  B )  ->  C  =  D )
Assertion
Ref Expression
frsucmptn  |-  ( -.  D  e.  _V  ->  ( F `  suc  B
)  =  (/) )

Proof of Theorem frsucmptn
StepHypRef Expression
1 frsucmpt.4 . . 3  |-  F  =  ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )
21fveq1i 5704 . 2  |-  ( F `
 suc  B )  =  ( ( rec ( ( x  e. 
_V  |->  C ) ,  A )  |`  om ) `  suc  B )
3 frfnom 6902 . . . . . 6  |-  ( rec ( ( x  e. 
_V  |->  C ) ,  A )  |`  om )  Fn  om
4 fndm 5522 . . . . . 6  |-  ( ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )  Fn  om  ->  dom  ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )  =  om )
53, 4ax-mp 5 . . . . 5  |-  dom  ( rec ( ( x  e. 
_V  |->  C ) ,  A )  |`  om )  =  om
65eleq2i 2507 . . . 4  |-  ( suc 
B  e.  dom  ( rec ( ( x  e. 
_V  |->  C ) ,  A )  |`  om )  <->  suc 
B  e.  om )
7 peano2b 6504 . . . . 5  |-  ( B  e.  om  <->  suc  B  e. 
om )
8 frsuc 6904 . . . . . . . 8  |-  ( B  e.  om  ->  (
( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  suc  B )  =  ( ( x  e.  _V  |->  C ) `  ( ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  B ) ) )
91fveq1i 5704 . . . . . . . . 9  |-  ( F `
 B )  =  ( ( rec (
( x  e.  _V  |->  C ) ,  A
)  |`  om ) `  B )
109fveq2i 5706 . . . . . . . 8  |-  ( ( x  e.  _V  |->  C ) `  ( F `
 B ) )  =  ( ( x  e.  _V  |->  C ) `
 ( ( rec ( ( x  e. 
_V  |->  C ) ,  A )  |`  om ) `  B ) )
118, 10syl6eqr 2493 . . . . . . 7  |-  ( B  e.  om  ->  (
( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  suc  B )  =  ( ( x  e.  _V  |->  C ) `  ( F `
 B ) ) )
12 nfmpt1 4393 . . . . . . . . . . . 12  |-  F/_ x
( x  e.  _V  |->  C )
13 frsucmpt.1 . . . . . . . . . . . 12  |-  F/_ x A
1412, 13nfrdg 6882 . . . . . . . . . . 11  |-  F/_ x rec ( ( x  e. 
_V  |->  C ) ,  A )
15 nfcv 2589 . . . . . . . . . . 11  |-  F/_ x om
1614, 15nfres 5124 . . . . . . . . . 10  |-  F/_ x
( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )
171, 16nfcxfr 2587 . . . . . . . . 9  |-  F/_ x F
18 frsucmpt.2 . . . . . . . . 9  |-  F/_ x B
1917, 18nffv 5710 . . . . . . . 8  |-  F/_ x
( F `  B
)
20 frsucmpt.3 . . . . . . . 8  |-  F/_ x D
21 frsucmpt.5 . . . . . . . 8  |-  ( x  =  ( F `  B )  ->  C  =  D )
22 eqid 2443 . . . . . . . 8  |-  ( x  e.  _V  |->  C )  =  ( x  e. 
_V  |->  C )
2319, 20, 21, 22fvmptnf 5803 . . . . . . 7  |-  ( -.  D  e.  _V  ->  ( ( x  e.  _V  |->  C ) `  ( F `  B )
)  =  (/) )
2411, 23sylan9eqr 2497 . . . . . 6  |-  ( ( -.  D  e.  _V  /\  B  e.  om )  ->  ( ( rec (
( x  e.  _V  |->  C ) ,  A
)  |`  om ) `  suc  B )  =  (/) )
2524ex 434 . . . . 5  |-  ( -.  D  e.  _V  ->  ( B  e.  om  ->  ( ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  suc  B )  =  (/) ) )
267, 25syl5bir 218 . . . 4  |-  ( -.  D  e.  _V  ->  ( suc  B  e.  om  ->  ( ( rec (
( x  e.  _V  |->  C ) ,  A
)  |`  om ) `  suc  B )  =  (/) ) )
276, 26syl5bi 217 . . 3  |-  ( -.  D  e.  _V  ->  ( suc  B  e.  dom  ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )  ->  ( ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  suc  B
)  =  (/) ) )
28 ndmfv 5726 . . 3  |-  ( -. 
suc  B  e.  dom  ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )  ->  ( ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  suc  B
)  =  (/) )
2927, 28pm2.61d1 159 . 2  |-  ( -.  D  e.  _V  ->  ( ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  suc  B )  =  (/) )
302, 29syl5eq 2487 1  |-  ( -.  D  e.  _V  ->  ( F `  suc  B
)  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1369    e. wcel 1756   F/_wnfc 2575   _Vcvv 2984   (/)c0 3649    e. cmpt 4362   suc csuc 4733   dom cdm 4852    |` cres 4854    Fn wfn 5425   ` cfv 5430   omcom 6488   reccrdg 6877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-om 6489  df-recs 6844  df-rdg 6878
This theorem is referenced by:  trpredlem1  27703
  Copyright terms: Public domain W3C validator