MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsucmpt2 Structured version   Unicode version

Theorem frsucmpt2 7165
Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation), using double-substitution instead of a bound variable condition. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
frsucmpt2.1  |-  F  =  ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )
frsucmpt2.2  |-  ( y  =  x  ->  E  =  C )
frsucmpt2.3  |-  ( y  =  ( F `  B )  ->  E  =  D )
Assertion
Ref Expression
frsucmpt2  |-  ( ( B  e.  om  /\  D  e.  V )  ->  ( F `  suc  B )  =  D )
Distinct variable groups:    y, A    y, B    y, C    y, D    x, E
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)    E( y)    F( x, y)    V( x, y)

Proof of Theorem frsucmpt2
StepHypRef Expression
1 nfcv 2591 . 2  |-  F/_ y A
2 nfcv 2591 . 2  |-  F/_ y B
3 nfcv 2591 . 2  |-  F/_ y D
4 frsucmpt2.1 . . 3  |-  F  =  ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )
5 frsucmpt2.2 . . . . . 6  |-  ( y  =  x  ->  E  =  C )
65cbvmptv 4518 . . . . 5  |-  ( y  e.  _V  |->  E )  =  ( x  e. 
_V  |->  C )
7 rdgeq1 7137 . . . . 5  |-  ( ( y  e.  _V  |->  E )  =  ( x  e.  _V  |->  C )  ->  rec ( ( y  e.  _V  |->  E ) ,  A )  =  rec ( ( x  e.  _V  |->  C ) ,  A ) )
86, 7ax-mp 5 . . . 4  |-  rec (
( y  e.  _V  |->  E ) ,  A
)  =  rec (
( x  e.  _V  |->  C ) ,  A
)
98reseq1i 5121 . . 3  |-  ( rec ( ( y  e. 
_V  |->  E ) ,  A )  |`  om )  =  ( rec (
( x  e.  _V  |->  C ) ,  A
)  |`  om )
104, 9eqtr4i 2461 . 2  |-  F  =  ( rec ( ( y  e.  _V  |->  E ) ,  A )  |`  om )
11 frsucmpt2.3 . 2  |-  ( y  =  ( F `  B )  ->  E  =  D )
121, 2, 3, 10, 11frsucmpt 7163 1  |-  ( ( B  e.  om  /\  D  e.  V )  ->  ( F `  suc  B )  =  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870   _Vcvv 3087    |-> cmpt 4484    |` cres 4856   suc csuc 5444   ` cfv 5601   omcom 6706   reccrdg 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136
This theorem is referenced by:  unblem2  7830  unblem3  7831  inf0  8126  trcl  8211  hsmexlem8  8852  wunex2  9162  wuncval2  9171  peano5nni  10612  peano2nn  10621  om2uzsuci  12159  neibastop2lem  30801
  Copyright terms: Public domain W3C validator