MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsn Structured version   Unicode version

Theorem frsn 4921
Description: Founded relation on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
frsn  |-  ( Rel 
R  ->  ( R  Fr  { A }  <->  -.  A R A ) )

Proof of Theorem frsn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fr 4691 . . . 4  |-  ( R  Fr  { A }  <->  A. x ( ( x 
C_  { A }  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
2 df-ne 2620 . . . . . . . . . 10  |-  ( x  =/=  (/)  <->  -.  x  =  (/) )
3 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  x  C_  { A } )  ->  x  C_ 
{ A } )
4 sssn 4043 . . . . . . . . . . . 12  |-  ( x 
C_  { A }  <->  ( x  =  (/)  \/  x  =  { A } ) )
53, 4sylib 196 . . . . . . . . . . 11  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  x  C_  { A } )  ->  (
x  =  (/)  \/  x  =  { A } ) )
65ord 377 . . . . . . . . . 10  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  x  C_  { A } )  ->  ( -.  x  =  (/)  ->  x  =  { A } ) )
72, 6syl5bi 217 . . . . . . . . 9  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  x  C_  { A } )  ->  (
x  =/=  (/)  ->  x  =  { A } ) )
87impr 619 . . . . . . . 8  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  ( x  C_  { A }  /\  x  =/=  (/) ) )  ->  x  =  { A } )
9 eqimss 3420 . . . . . . . . . 10  |-  ( x  =  { A }  ->  x  C_  { A } )
109adantl 466 . . . . . . . . 9  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  x  =  { A } )  ->  x  C_ 
{ A } )
11 simpr 461 . . . . . . . . . 10  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  x  =  { A } )  ->  x  =  { A } )
12 snnzg 4004 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  { A }  =/=  (/) )
1312ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  x  =  { A } )  ->  { A }  =/=  (/) )
1411, 13eqnetrd 2638 . . . . . . . . 9  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  x  =  { A } )  ->  x  =/=  (/) )
1510, 14jca 532 . . . . . . . 8  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  x  =  { A } )  ->  (
x  C_  { A }  /\  x  =/=  (/) ) )
168, 15impbida 828 . . . . . . 7  |-  ( ( Rel  R  /\  A  e.  _V )  ->  (
( x  C_  { A }  /\  x  =/=  (/) )  <->  x  =  { A } ) )
1716imbi1d 317 . . . . . 6  |-  ( ( Rel  R  /\  A  e.  _V )  ->  (
( ( x  C_  { A }  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y )  <->  ( x  =  { A }  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) ) )
1817albidv 1679 . . . . 5  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( A. x ( ( x 
C_  { A }  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y )  <->  A. x ( x  =  { A }  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) ) )
19 snex 4545 . . . . . 6  |-  { A }  e.  _V
20 raleq 2929 . . . . . . 7  |-  ( x  =  { A }  ->  ( A. z  e.  x  -.  z R y  <->  A. z  e.  { A }  -.  z R y ) )
2120rexeqbi1dv 2938 . . . . . 6  |-  ( x  =  { A }  ->  ( E. y  e.  x  A. z  e.  x  -.  z R y  <->  E. y  e.  { A } A. z  e. 
{ A }  -.  z R y ) )
2219, 21ceqsalv 3012 . . . . 5  |-  ( A. x ( x  =  { A }  ->  E. y  e.  x  A. z  e.  x  -.  z R y )  <->  E. y  e.  { A } A. z  e.  { A }  -.  z R y )
2318, 22syl6bb 261 . . . 4  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( A. x ( ( x 
C_  { A }  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y )  <->  E. y  e.  { A } A. z  e.  { A }  -.  z R y ) )
241, 23syl5bb 257 . . 3  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Fr  { A } 
<->  E. y  e.  { A } A. z  e. 
{ A }  -.  z R y ) )
25 breq2 4308 . . . . . . . 8  |-  ( y  =  A  ->  (
z R y  <->  z R A ) )
2625notbid 294 . . . . . . 7  |-  ( y  =  A  ->  ( -.  z R y  <->  -.  z R A ) )
2726ralbidv 2747 . . . . . 6  |-  ( y  =  A  ->  ( A. z  e.  { A }  -.  z R y  <->  A. z  e.  { A }  -.  z R A ) )
2827rexsng 3925 . . . . 5  |-  ( A  e.  _V  ->  ( E. y  e.  { A } A. z  e.  { A }  -.  z R y  <->  A. z  e.  { A }  -.  z R A ) )
29 breq1 4307 . . . . . . 7  |-  ( z  =  A  ->  (
z R A  <->  A R A ) )
3029notbid 294 . . . . . 6  |-  ( z  =  A  ->  ( -.  z R A  <->  -.  A R A ) )
3130ralsng 3924 . . . . 5  |-  ( A  e.  _V  ->  ( A. z  e.  { A }  -.  z R A  <->  -.  A R A ) )
3228, 31bitrd 253 . . . 4  |-  ( A  e.  _V  ->  ( E. y  e.  { A } A. z  e.  { A }  -.  z R y  <->  -.  A R A ) )
3332adantl 466 . . 3  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( E. y  e.  { A } A. z  e.  { A }  -.  z R y  <->  -.  A R A ) )
3424, 33bitrd 253 . 2  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Fr  { A } 
<->  -.  A R A ) )
35 snprc 3951 . . . . 5  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
36 fr0 4711 . . . . . 6  |-  R  Fr  (/)
37 freq2 4703 . . . . . 6  |-  ( { A }  =  (/)  ->  ( R  Fr  { A }  <->  R  Fr  (/) ) )
3836, 37mpbiri 233 . . . . 5  |-  ( { A }  =  (/)  ->  R  Fr  { A } )
3935, 38sylbi 195 . . . 4  |-  ( -.  A  e.  _V  ->  R  Fr  { A }
)
4039adantl 466 . . 3  |-  ( ( Rel  R  /\  -.  A  e.  _V )  ->  R  Fr  { A } )
41 brrelex 4889 . . . . 5  |-  ( ( Rel  R  /\  A R A )  ->  A  e.  _V )
4241ex 434 . . . 4  |-  ( Rel 
R  ->  ( A R A  ->  A  e. 
_V ) )
4342con3dimp 441 . . 3  |-  ( ( Rel  R  /\  -.  A  e.  _V )  ->  -.  A R A )
4440, 432thd 240 . 2  |-  ( ( Rel  R  /\  -.  A  e.  _V )  ->  ( R  Fr  { A }  <->  -.  A R A ) )
4534, 44pm2.61dan 789 1  |-  ( Rel 
R  ->  ( R  Fr  { A }  <->  -.  A R A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369   A.wal 1367    = wceq 1369    e. wcel 1756    =/= wne 2618   A.wral 2727   E.wrex 2728   _Vcvv 2984    C_ wss 3340   (/)c0 3649   {csn 3889   class class class wbr 4304    Fr wfr 4688   Rel wrel 4857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pr 4543
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-sbc 3199  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-sn 3890  df-pr 3892  df-op 3896  df-br 4305  df-opab 4363  df-fr 4691  df-xp 4858  df-rel 4859
This theorem is referenced by:  wesn  4922
  Copyright terms: Public domain W3C validator