Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem6 Structured version   Unicode version

Theorem frrlem6 29323
Description: Lemma for founded recursion. The union of all acceptable functions is a relationship. (Contributed by Paul Chapman, 21-Apr-2012.)
Hypotheses
Ref Expression
frrlem6.1  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
frrlem6.2  |-  F  = 
U. B
Assertion
Ref Expression
frrlem6  |-  Rel  F
Distinct variable groups:    A, f, x, y    f, G, x, y    R, f, x, y
Allowed substitution hints:    B( x, y, f)    F( x, y, f)

Proof of Theorem frrlem6
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 frrlem6.2 . 2  |-  F  = 
U. B
2 reluni 5131 . . . 4  |-  ( Rel  U. B  <->  A. g  e.  B  Rel  g )
3 frrlem6.1 . . . . . 6  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
43frrlem2 29315 . . . . 5  |-  ( g  e.  B  ->  Fun  g )
5 funrel 5611 . . . . 5  |-  ( Fun  g  ->  Rel  g )
64, 5syl 16 . . . 4  |-  ( g  e.  B  ->  Rel  g )
72, 6mprgbir 2831 . . 3  |-  Rel  U. B
8 releq 5091 . . 3  |-  ( F  =  U. B  -> 
( Rel  F  <->  Rel  U. B
) )
97, 8mpbiri 233 . 2  |-  ( F  =  U. B  ->  Rel  F )
101, 9ax-mp 5 1  |-  Rel  F
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452   A.wral 2817    C_ wss 3481   U.cuni 4251    |` cres 5007   Rel wrel 5010   Fun wfun 5588    Fn wfn 5589   ` cfv 5594  (class class class)co 6295   Predcpred 29170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602  df-ov 6298  df-pred 29171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator