Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem5c Structured version   Unicode version

Theorem frrlem5c 28970
Description: Lemma for founded recursion. The union of a subclass of  B is a function. (Contributed by Paul Chapman, 29-Apr-2012.)
Hypotheses
Ref Expression
frrlem5.1  |-  R  Fr  A
frrlem5.2  |-  R Se  A
frrlem5.3  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
Assertion
Ref Expression
frrlem5c  |-  ( C 
C_  B  ->  Fun  U. C )
Distinct variable groups:    A, f, x, y    f, G, x, y    R, f, x, y   
x, B
Allowed substitution hints:    B( y, f)    C( x, y, f)

Proof of Theorem frrlem5c
Dummy variables  g  h  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4266 . 2  |-  ( C 
C_  B  ->  U. C  C_ 
U. B )
2 ssid 3523 . . . 4  |-  B  C_  B
3 frrlem5.1 . . . . 5  |-  R  Fr  A
4 frrlem5.2 . . . . 5  |-  R Se  A
5 frrlem5.3 . . . . 5  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
63, 4, 5frrlem5b 28969 . . . 4  |-  ( B 
C_  B  ->  Rel  U. B )
72, 6ax-mp 5 . . 3  |-  Rel  U. B
8 eluni 4248 . . . . . . . . 9  |-  ( <.
x ,  u >.  e. 
U. B  <->  E. g
( <. x ,  u >.  e.  g  /\  g  e.  B ) )
9 df-br 4448 . . . . . . . . 9  |-  ( x U. B u  <->  <. x ,  u >.  e.  U. B
)
10 df-br 4448 . . . . . . . . . . 11  |-  ( x g u  <->  <. x ,  u >.  e.  g
)
1110anbi1i 695 . . . . . . . . . 10  |-  ( ( x g u  /\  g  e.  B )  <->  (
<. x ,  u >.  e.  g  /\  g  e.  B ) )
1211exbii 1644 . . . . . . . . 9  |-  ( E. g ( x g u  /\  g  e.  B )  <->  E. g
( <. x ,  u >.  e.  g  /\  g  e.  B ) )
138, 9, 123bitr4i 277 . . . . . . . 8  |-  ( x U. B u  <->  E. g
( x g u  /\  g  e.  B
) )
14 eluni 4248 . . . . . . . . 9  |-  ( <.
x ,  v >.  e.  U. B  <->  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  B ) )
15 df-br 4448 . . . . . . . . 9  |-  ( x U. B v  <->  <. x ,  v >.  e.  U. B
)
16 df-br 4448 . . . . . . . . . . 11  |-  ( x h v  <->  <. x ,  v >.  e.  h
)
1716anbi1i 695 . . . . . . . . . 10  |-  ( ( x h v  /\  h  e.  B )  <->  (
<. x ,  v >.  e.  h  /\  h  e.  B ) )
1817exbii 1644 . . . . . . . . 9  |-  ( E. h ( x h v  /\  h  e.  B )  <->  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  B ) )
1914, 15, 183bitr4i 277 . . . . . . . 8  |-  ( x U. B v  <->  E. h
( x h v  /\  h  e.  B
) )
2013, 19anbi12i 697 . . . . . . 7  |-  ( ( x U. B u  /\  x U. B
v )  <->  ( E. g ( x g u  /\  g  e.  B )  /\  E. h ( x h v  /\  h  e.  B ) ) )
21 eeanv 1957 . . . . . . 7  |-  ( E. g E. h ( ( x g u  /\  g  e.  B
)  /\  ( x h v  /\  h  e.  B ) )  <->  ( E. g ( x g u  /\  g  e.  B )  /\  E. h ( x h v  /\  h  e.  B ) ) )
2220, 21bitr4i 252 . . . . . 6  |-  ( ( x U. B u  /\  x U. B
v )  <->  E. g E. h ( ( x g u  /\  g  e.  B )  /\  (
x h v  /\  h  e.  B )
) )
233, 4, 5frrlem5 28968 . . . . . . . . 9  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( x g u  /\  x h v )  ->  u  =  v ) )
2423impcom 430 . . . . . . . 8  |-  ( ( ( x g u  /\  x h v )  /\  ( g  e.  B  /\  h  e.  B ) )  ->  u  =  v )
2524an4s 824 . . . . . . 7  |-  ( ( ( x g u  /\  g  e.  B
)  /\  ( x h v  /\  h  e.  B ) )  ->  u  =  v )
2625exlimivv 1699 . . . . . 6  |-  ( E. g E. h ( ( x g u  /\  g  e.  B
)  /\  ( x h v  /\  h  e.  B ) )  ->  u  =  v )
2722, 26sylbi 195 . . . . 5  |-  ( ( x U. B u  /\  x U. B
v )  ->  u  =  v )
2827ax-gen 1601 . . . 4  |-  A. v
( ( x U. B u  /\  x U. B v )  ->  u  =  v )
2928gen2 1602 . . 3  |-  A. x A. u A. v ( ( x U. B u  /\  x U. B
v )  ->  u  =  v )
30 dffun2 5596 . . 3  |-  ( Fun  U. B  <->  ( Rel  U. B  /\  A. x A. u A. v ( ( x U. B u  /\  x U. B
v )  ->  u  =  v ) ) )
317, 29, 30mpbir2an 918 . 2  |-  Fun  U. B
32 funss 5604 . 2  |-  ( U. C  C_  U. B  -> 
( Fun  U. B  ->  Fun  U. C ) )
331, 31, 32mpisyl 18 1  |-  ( C 
C_  B  ->  Fun  U. C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452   A.wral 2814    C_ wss 3476   <.cop 4033   U.cuni 4245   class class class wbr 4447    Fr wfr 4835   Se wse 4836    |` cres 5001   Rel wrel 5004   Fun wfun 5580    Fn wfn 5581   ` cfv 5586  (class class class)co 6282   Predcpred 28820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-om 6679  df-recs 7039  df-rdg 7073  df-pred 28821  df-trpred 28878
This theorem is referenced by:  frrlem10  28975
  Copyright terms: Public domain W3C validator