Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem3 Structured version   Unicode version

Theorem frrlem3 30076
Description: Lemma for founded recursion. An acceptable function's domain is a subset of  A. (Contributed by Paul Chapman, 21-Apr-2012.)
Hypothesis
Ref Expression
frrlem1.1  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
Assertion
Ref Expression
frrlem3  |-  ( g  e.  B  ->  dom  g  C_  A )
Distinct variable groups:    A, f,
g, x, y    f, G, g, x, y    R, f, g, x, y
Allowed substitution hints:    B( x, y, f, g)

Proof of Theorem frrlem3
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frrlem1.1 . . . 4  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
21frrlem1 30074 . . 3  |-  B  =  { g  |  E. z ( g  Fn  z  /\  ( z 
C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z  /\  A. w  e.  z  ( g `  w
)  =  ( w G ( g  |`  Pred ( R ,  A ,  w ) ) ) ) ) }
32abeq2i 2529 . 2  |-  ( g  e.  B  <->  E. z
( g  Fn  z  /\  ( z  C_  A  /\  A. w  e.  z 
Pred ( R ,  A ,  w )  C_  z  /\  A. w  e.  z  ( g `  w )  =  ( w G ( g  |`  Pred ( R ,  A ,  w )
) ) ) ) )
4 fndm 5660 . . . 4  |-  ( g  Fn  z  ->  dom  g  =  z )
5 simp1 997 . . . 4  |-  ( ( z  C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z  /\  A. w  e.  z  ( g `  w
)  =  ( w G ( g  |`  Pred ( R ,  A ,  w ) ) ) )  ->  z  C_  A )
6 sseq1 3462 . . . . 5  |-  ( dom  g  =  z  -> 
( dom  g  C_  A 
<->  z  C_  A )
)
76biimpar 483 . . . 4  |-  ( ( dom  g  =  z  /\  z  C_  A
)  ->  dom  g  C_  A )
84, 5, 7syl2an 475 . . 3  |-  ( ( g  Fn  z  /\  ( z  C_  A  /\  A. w  e.  z 
Pred ( R ,  A ,  w )  C_  z  /\  A. w  e.  z  ( g `  w )  =  ( w G ( g  |`  Pred ( R ,  A ,  w )
) ) ) )  ->  dom  g  C_  A )
98exlimiv 1743 . 2  |-  ( E. z ( g  Fn  z  /\  ( z 
C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z  /\  A. w  e.  z  ( g `  w
)  =  ( w G ( g  |`  Pred ( R ,  A ,  w ) ) ) ) )  ->  dom  g  C_  A )
103, 9sylbi 195 1  |-  ( g  e.  B  ->  dom  g  C_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405   E.wex 1633    e. wcel 1842   {cab 2387   A.wral 2753    C_ wss 3413   dom cdm 4822    |` cres 4824   Predcpred 5365    Fn wfn 5563   ` cfv 5568  (class class class)co 6277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-iota 5532  df-fun 5570  df-fn 5571  df-fv 5576  df-ov 6280
This theorem is referenced by:  frrlem5  30078  frrlem5d  30081  frrlem7  30084
  Copyright terms: Public domain W3C validator