MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdval Structured version   Unicode version

Theorem frmdval 15835
Description: Value of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdval.m  |-  M  =  (freeMnd `  I )
frmdval.b  |-  ( I  e.  V  ->  B  = Word  I )
frmdval.p  |-  .+  =  ( concat 
|`  ( B  X.  B ) )
Assertion
Ref Expression
frmdval  |-  ( I  e.  V  ->  M  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. } )

Proof of Theorem frmdval
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 frmdval.m . 2  |-  M  =  (freeMnd `  I )
2 df-frmd 15833 . . . 4  |- freeMnd  =  ( i  e.  _V  |->  {
<. ( Base `  ndx ) , Word  i >. ,  <. ( +g  `  ndx ) ,  ( concat  |`  (Word  i  X. Word  i ) ) >. } )
32a1i 11 . . 3  |-  ( I  e.  V  -> freeMnd  =  ( i  e.  _V  |->  {
<. ( Base `  ndx ) , Word  i >. ,  <. ( +g  `  ndx ) ,  ( concat  |`  (Word  i  X. Word  i ) ) >. } ) )
4 wrdeq 12517 . . . . . 6  |-  ( i  =  I  -> Word  i  = Word 
I )
5 frmdval.b . . . . . . 7  |-  ( I  e.  V  ->  B  = Word  I )
65eqcomd 2468 . . . . . 6  |-  ( I  e.  V  -> Word  I  =  B )
74, 6sylan9eqr 2523 . . . . 5  |-  ( ( I  e.  V  /\  i  =  I )  -> Word  i  =  B )
87opeq2d 4213 . . . 4  |-  ( ( I  e.  V  /\  i  =  I )  -> 
<. ( Base `  ndx ) , Word  i >.  =  <. (
Base `  ndx ) ,  B >. )
97, 7xpeq12d 5017 . . . . . . 7  |-  ( ( I  e.  V  /\  i  =  I )  ->  (Word  i  X. Word  i
)  =  ( B  X.  B ) )
109reseq2d 5264 . . . . . 6  |-  ( ( I  e.  V  /\  i  =  I )  ->  ( concat  |`  (Word  i  X. Word 
i ) )  =  ( concat  |`  ( B  X.  B ) ) )
11 frmdval.p . . . . . 6  |-  .+  =  ( concat 
|`  ( B  X.  B ) )
1210, 11syl6eqr 2519 . . . . 5  |-  ( ( I  e.  V  /\  i  =  I )  ->  ( concat  |`  (Word  i  X. Word 
i ) )  = 
.+  )
1312opeq2d 4213 . . . 4  |-  ( ( I  e.  V  /\  i  =  I )  -> 
<. ( +g  `  ndx ) ,  ( concat  |`  (Word  i  X. Word  i ) )
>.  =  <. ( +g  ` 
ndx ) ,  .+  >.
)
148, 13preq12d 4107 . . 3  |-  ( ( I  e.  V  /\  i  =  I )  ->  { <. ( Base `  ndx ) , Word  i >. ,  <. ( +g  `  ndx ) ,  ( concat  |`  (Word  i  X. Word  i ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. } )
15 elex 3115 . . 3  |-  ( I  e.  V  ->  I  e.  _V )
16 prex 4682 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. }  e.  _V
1716a1i 11 . . 3  |-  ( I  e.  V  ->  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. }  e.  _V )
183, 14, 15, 17fvmptd 5946 . 2  |-  ( I  e.  V  ->  (freeMnd `  I )  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. } )
191, 18syl5eq 2513 1  |-  ( I  e.  V  ->  M  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   _Vcvv 3106   {cpr 4022   <.cop 4026    |-> cmpt 4498    X. cxp 4990    |` cres 4994   ` cfv 5579  Word cword 12487   concat cconcat 12489   ndxcnx 14476   Basecbs 14479   +g cplusg 14544  freeMndcfrmd 15831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-n0 10785  df-z 10854  df-uz 11072  df-fz 11662  df-fzo 11782  df-word 12495  df-frmd 15833
This theorem is referenced by:  frmdbas  15836  frmdplusg  15838
  Copyright terms: Public domain W3C validator