MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdval Structured version   Visualization version   Unicode version

Theorem frmdval 16635
Description: Value of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdval.m  |-  M  =  (freeMnd `  I )
frmdval.b  |-  ( I  e.  V  ->  B  = Word  I )
frmdval.p  |-  .+  =  ( ++  |`  ( B  X.  B ) )
Assertion
Ref Expression
frmdval  |-  ( I  e.  V  ->  M  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. } )

Proof of Theorem frmdval
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 frmdval.m . 2  |-  M  =  (freeMnd `  I )
2 df-frmd 16633 . . . 4  |- freeMnd  =  ( i  e.  _V  |->  {
<. ( Base `  ndx ) , Word  i >. ,  <. ( +g  `  ndx ) ,  ( ++  |`  (Word  i  X. Word  i ) ) >. } )
32a1i 11 . . 3  |-  ( I  e.  V  -> freeMnd  =  ( i  e.  _V  |->  {
<. ( Base `  ndx ) , Word  i >. ,  <. ( +g  `  ndx ) ,  ( ++  |`  (Word  i  X. Word  i ) ) >. } ) )
4 wrdeq 12689 . . . . . 6  |-  ( i  =  I  -> Word  i  = Word 
I )
5 frmdval.b . . . . . . 7  |-  ( I  e.  V  ->  B  = Word  I )
65eqcomd 2457 . . . . . 6  |-  ( I  e.  V  -> Word  I  =  B )
74, 6sylan9eqr 2507 . . . . 5  |-  ( ( I  e.  V  /\  i  =  I )  -> Word  i  =  B )
87opeq2d 4173 . . . 4  |-  ( ( I  e.  V  /\  i  =  I )  -> 
<. ( Base `  ndx ) , Word  i >.  =  <. (
Base `  ndx ) ,  B >. )
97sqxpeqd 4860 . . . . . . 7  |-  ( ( I  e.  V  /\  i  =  I )  ->  (Word  i  X. Word  i
)  =  ( B  X.  B ) )
109reseq2d 5105 . . . . . 6  |-  ( ( I  e.  V  /\  i  =  I )  ->  ( ++  |`  (Word  i  X. Word 
i ) )  =  ( ++  |`  ( B  X.  B ) ) )
11 frmdval.p . . . . . 6  |-  .+  =  ( ++  |`  ( B  X.  B ) )
1210, 11syl6eqr 2503 . . . . 5  |-  ( ( I  e.  V  /\  i  =  I )  ->  ( ++  |`  (Word  i  X. Word 
i ) )  = 
.+  )
1312opeq2d 4173 . . . 4  |-  ( ( I  e.  V  /\  i  =  I )  -> 
<. ( +g  `  ndx ) ,  ( ++  |`  (Word  i  X. Word  i ) )
>.  =  <. ( +g  ` 
ndx ) ,  .+  >.
)
148, 13preq12d 4059 . . 3  |-  ( ( I  e.  V  /\  i  =  I )  ->  { <. ( Base `  ndx ) , Word  i >. ,  <. ( +g  `  ndx ) ,  ( ++  |`  (Word  i  X. Word  i ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. } )
15 elex 3054 . . 3  |-  ( I  e.  V  ->  I  e.  _V )
16 prex 4642 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. }  e.  _V
1716a1i 11 . . 3  |-  ( I  e.  V  ->  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. }  e.  _V )
183, 14, 15, 17fvmptd 5954 . 2  |-  ( I  e.  V  ->  (freeMnd `  I )  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. } )
191, 18syl5eq 2497 1  |-  ( I  e.  V  ->  M  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1444    e. wcel 1887   _Vcvv 3045   {cpr 3970   <.cop 3974    |-> cmpt 4461    X. cxp 4832    |` cres 4836   ` cfv 5582  Word cword 12656   ++ cconcat 12658   ndxcnx 15118   Basecbs 15121   +g cplusg 15190  freeMndcfrmd 16631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-fzo 11916  df-hash 12516  df-word 12664  df-frmd 16633
This theorem is referenced by:  frmdbas  16636  frmdplusg  16638
  Copyright terms: Public domain W3C validator