MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup1 Structured version   Unicode version

Theorem frmdup1 15535
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdup.m  |-  M  =  (freeMnd `  I )
frmdup.b  |-  B  =  ( Base `  G
)
frmdup.e  |-  E  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )
frmdup.g  |-  ( ph  ->  G  e.  Mnd )
frmdup.i  |-  ( ph  ->  I  e.  X )
frmdup.a  |-  ( ph  ->  A : I --> B )
Assertion
Ref Expression
frmdup1  |-  ( ph  ->  E  e.  ( M MndHom  G ) )
Distinct variable groups:    x, A    x, B    x, G    ph, x    x, I
Allowed substitution hints:    E( x)    M( x)    X( x)

Proof of Theorem frmdup1
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup.i . . . 4  |-  ( ph  ->  I  e.  X )
2 frmdup.m . . . . 5  |-  M  =  (freeMnd `  I )
32frmdmnd 15530 . . . 4  |-  ( I  e.  X  ->  M  e.  Mnd )
41, 3syl 16 . . 3  |-  ( ph  ->  M  e.  Mnd )
5 frmdup.g . . 3  |-  ( ph  ->  G  e.  Mnd )
64, 5jca 529 . 2  |-  ( ph  ->  ( M  e.  Mnd  /\  G  e.  Mnd )
)
75adantr 462 . . . . . 6  |-  ( (
ph  /\  x  e. Word  I )  ->  G  e.  Mnd )
8 simpr 458 . . . . . . 7  |-  ( (
ph  /\  x  e. Word  I )  ->  x  e. Word  I )
9 frmdup.a . . . . . . . 8  |-  ( ph  ->  A : I --> B )
109adantr 462 . . . . . . 7  |-  ( (
ph  /\  x  e. Word  I )  ->  A :
I --> B )
11 wrdco 12455 . . . . . . 7  |-  ( ( x  e. Word  I  /\  A : I --> B )  ->  ( A  o.  x )  e. Word  B
)
128, 10, 11syl2anc 656 . . . . . 6  |-  ( (
ph  /\  x  e. Word  I )  ->  ( A  o.  x )  e. Word  B
)
13 frmdup.b . . . . . . 7  |-  B  =  ( Base `  G
)
1413gsumwcl 15511 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( A  o.  x
)  e. Word  B )  ->  ( G  gsumg  ( A  o.  x
) )  e.  B
)
157, 12, 14syl2anc 656 . . . . 5  |-  ( (
ph  /\  x  e. Word  I )  ->  ( G  gsumg  ( A  o.  x ) )  e.  B )
16 frmdup.e . . . . 5  |-  E  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )
1715, 16fmptd 5864 . . . 4  |-  ( ph  ->  E :Word  I --> B )
18 eqid 2441 . . . . . . 7  |-  ( Base `  M )  =  (
Base `  M )
192, 18frmdbas 15523 . . . . . 6  |-  ( I  e.  X  ->  ( Base `  M )  = Word 
I )
201, 19syl 16 . . . . 5  |-  ( ph  ->  ( Base `  M
)  = Word  I )
2120feq2d 5544 . . . 4  |-  ( ph  ->  ( E : (
Base `  M ) --> B 
<->  E :Word  I --> B ) )
2217, 21mpbird 232 . . 3  |-  ( ph  ->  E : ( Base `  M ) --> B )
232, 18frmdelbas 15524 . . . . . . . . 9  |-  ( y  e.  ( Base `  M
)  ->  y  e. Word  I )
2423ad2antrl 722 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  y  e. Word  I )
252, 18frmdelbas 15524 . . . . . . . . 9  |-  ( z  e.  ( Base `  M
)  ->  z  e. Word  I )
2625ad2antll 723 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  z  e. Word  I )
279adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  A : I --> B )
28 ccatco 12459 . . . . . . . 8  |-  ( ( y  e. Word  I  /\  z  e. Word  I  /\  A : I --> B )  ->  ( A  o.  ( y concat  z )
)  =  ( ( A  o.  y ) concat 
( A  o.  z
) ) )
2924, 26, 27, 28syl3anc 1213 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( A  o.  ( y concat  z ) )  =  ( ( A  o.  y
) concat  ( A  o.  z
) ) )
3029oveq2d 6106 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( G  gsumg  ( A  o.  (
y concat  z ) ) )  =  ( G  gsumg  ( ( A  o.  y ) concat 
( A  o.  z
) ) ) )
315adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  G  e.  Mnd )
32 wrdco 12455 . . . . . . . 8  |-  ( ( y  e. Word  I  /\  A : I --> B )  ->  ( A  o.  y )  e. Word  B
)
3324, 27, 32syl2anc 656 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( A  o.  y )  e. Word  B )
34 wrdco 12455 . . . . . . . 8  |-  ( ( z  e. Word  I  /\  A : I --> B )  ->  ( A  o.  z )  e. Word  B
)
3526, 27, 34syl2anc 656 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( A  o.  z )  e. Word  B )
36 eqid 2441 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
3713, 36gsumccat 15512 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( A  o.  y
)  e. Word  B  /\  ( A  o.  z
)  e. Word  B )  ->  ( G  gsumg  ( ( A  o.  y ) concat  ( A  o.  z ) ) )  =  ( ( G 
gsumg  ( A  o.  y
) ) ( +g  `  G ) ( G 
gsumg  ( A  o.  z
) ) ) )
3831, 33, 35, 37syl3anc 1213 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( G  gsumg  ( ( A  o.  y ) concat  ( A  o.  z ) ) )  =  ( ( G 
gsumg  ( A  o.  y
) ) ( +g  `  G ) ( G 
gsumg  ( A  o.  z
) ) ) )
3930, 38eqtrd 2473 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( G  gsumg  ( A  o.  (
y concat  z ) ) )  =  ( ( G 
gsumg  ( A  o.  y
) ) ( +g  `  G ) ( G 
gsumg  ( A  o.  z
) ) ) )
40 eqid 2441 . . . . . . . . 9  |-  ( +g  `  M )  =  ( +g  `  M )
412, 18, 40frmdadd 15526 . . . . . . . 8  |-  ( ( y  e.  ( Base `  M )  /\  z  e.  ( Base `  M
) )  ->  (
y ( +g  `  M
) z )  =  ( y concat  z ) )
4241adantl 463 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  (
y ( +g  `  M
) z )  =  ( y concat  z ) )
4342fveq2d 5692 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( E `  ( y
( +g  `  M ) z ) )  =  ( E `  (
y concat  z ) ) )
44 ccatcl 12270 . . . . . . . 8  |-  ( ( y  e. Word  I  /\  z  e. Word  I )  ->  ( y concat  z )  e. Word  I )
4524, 26, 44syl2anc 656 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  (
y concat  z )  e. Word  I
)
46 coeq2 4994 . . . . . . . . 9  |-  ( x  =  ( y concat  z
)  ->  ( A  o.  x )  =  ( A  o.  ( y concat 
z ) ) )
4746oveq2d 6106 . . . . . . . 8  |-  ( x  =  ( y concat  z
)  ->  ( G  gsumg  ( A  o.  x ) )  =  ( G 
gsumg  ( A  o.  (
y concat  z ) ) ) )
48 ovex 6115 . . . . . . . 8  |-  ( G 
gsumg  ( A  o.  x
) )  e.  _V
4947, 16, 48fvmpt3i 5775 . . . . . . 7  |-  ( ( y concat  z )  e. Word 
I  ->  ( E `  ( y concat  z ) )  =  ( G 
gsumg  ( A  o.  (
y concat  z ) ) ) )
5045, 49syl 16 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( E `  ( y concat  z ) )  =  ( G  gsumg  ( A  o.  (
y concat  z ) ) ) )
5143, 50eqtrd 2473 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( E `  ( y
( +g  `  M ) z ) )  =  ( G  gsumg  ( A  o.  (
y concat  z ) ) ) )
52 coeq2 4994 . . . . . . . . 9  |-  ( x  =  y  ->  ( A  o.  x )  =  ( A  o.  y ) )
5352oveq2d 6106 . . . . . . . 8  |-  ( x  =  y  ->  ( G  gsumg  ( A  o.  x
) )  =  ( G  gsumg  ( A  o.  y
) ) )
5453, 16, 48fvmpt3i 5775 . . . . . . 7  |-  ( y  e. Word  I  ->  ( E `  y )  =  ( G  gsumg  ( A  o.  y ) ) )
55 coeq2 4994 . . . . . . . . 9  |-  ( x  =  z  ->  ( A  o.  x )  =  ( A  o.  z ) )
5655oveq2d 6106 . . . . . . . 8  |-  ( x  =  z  ->  ( G  gsumg  ( A  o.  x
) )  =  ( G  gsumg  ( A  o.  z
) ) )
5756, 16, 48fvmpt3i 5775 . . . . . . 7  |-  ( z  e. Word  I  ->  ( E `  z )  =  ( G  gsumg  ( A  o.  z ) ) )
5854, 57oveqan12d 6109 . . . . . 6  |-  ( ( y  e. Word  I  /\  z  e. Word  I )  ->  ( ( E `  y ) ( +g  `  G ) ( E `
 z ) )  =  ( ( G 
gsumg  ( A  o.  y
) ) ( +g  `  G ) ( G 
gsumg  ( A  o.  z
) ) ) )
5924, 26, 58syl2anc 656 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  (
( E `  y
) ( +g  `  G
) ( E `  z ) )  =  ( ( G  gsumg  ( A  o.  y ) ) ( +g  `  G
) ( G  gsumg  ( A  o.  z ) ) ) )
6039, 51, 593eqtr4d 2483 . . . 4  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( E `  ( y
( +g  `  M ) z ) )  =  ( ( E `  y ) ( +g  `  G ) ( E `
 z ) ) )
6160ralrimivva 2806 . . 3  |-  ( ph  ->  A. y  e.  (
Base `  M ) A. z  e.  ( Base `  M ) ( E `  ( y ( +g  `  M
) z ) )  =  ( ( E `
 y ) ( +g  `  G ) ( E `  z
) ) )
62 wrd0 12248 . . . 4  |-  (/)  e. Word  I
63 coeq2 4994 . . . . . . . 8  |-  ( x  =  (/)  ->  ( A  o.  x )  =  ( A  o.  (/) ) )
64 co02 5348 . . . . . . . 8  |-  ( A  o.  (/) )  =  (/)
6563, 64syl6eq 2489 . . . . . . 7  |-  ( x  =  (/)  ->  ( A  o.  x )  =  (/) )
6665oveq2d 6106 . . . . . 6  |-  ( x  =  (/)  ->  ( G 
gsumg  ( A  o.  x
) )  =  ( G  gsumg  (/) ) )
67 eqid 2441 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
6867gsum0 15503 . . . . . 6  |-  ( G 
gsumg  (/) )  =  ( 0g
`  G )
6966, 68syl6eq 2489 . . . . 5  |-  ( x  =  (/)  ->  ( G 
gsumg  ( A  o.  x
) )  =  ( 0g `  G ) )
7069, 16, 48fvmpt3i 5775 . . . 4  |-  ( (/)  e. Word  I  ->  ( E `  (/) )  =  ( 0g `  G ) )
7162, 70mp1i 12 . . 3  |-  ( ph  ->  ( E `  (/) )  =  ( 0g `  G
) )
7222, 61, 713jca 1163 . 2  |-  ( ph  ->  ( E : (
Base `  M ) --> B  /\  A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( E `  ( y ( +g  `  M ) z ) )  =  ( ( E `  y ) ( +g  `  G
) ( E `  z ) )  /\  ( E `  (/) )  =  ( 0g `  G
) ) )
732frmd0 15531 . . 3  |-  (/)  =  ( 0g `  M )
7418, 13, 40, 36, 73, 67ismhm 15462 . 2  |-  ( E  e.  ( M MndHom  G
)  <->  ( ( M  e.  Mnd  /\  G  e.  Mnd )  /\  ( E : ( Base `  M
) --> B  /\  A. y  e.  ( Base `  M ) A. z  e.  ( Base `  M
) ( E `  ( y ( +g  `  M ) z ) )  =  ( ( E `  y ) ( +g  `  G
) ( E `  z ) )  /\  ( E `  (/) )  =  ( 0g `  G
) ) ) )
756, 72, 74sylanbrc 659 1  |-  ( ph  ->  E  e.  ( M MndHom  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   A.wral 2713   (/)c0 3634    e. cmpt 4347    o. ccom 4840   -->wf 5411   ` cfv 5415  (class class class)co 6090  Word cword 12217   concat cconcat 12219   Basecbs 14170   +g cplusg 14234   0gc0g 14374    gsumg cgsu 14375   Mndcmnd 15405   MndHom cmhm 15458  freeMndcfrmd 15518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-fzo 11545  df-seq 11803  df-hash 12100  df-word 12225  df-concat 12227  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-0g 14376  df-gsum 14377  df-mnd 15411  df-mhm 15460  df-submnd 15461  df-frmd 15520
This theorem is referenced by:  frmdup3  15537
  Copyright terms: Public domain W3C validator