MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup1 Unicode version

Theorem frmdup1 14764
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdup.m  |-  M  =  (freeMnd `  I )
frmdup.b  |-  B  =  ( Base `  G
)
frmdup.e  |-  E  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )
frmdup.g  |-  ( ph  ->  G  e.  Mnd )
frmdup.i  |-  ( ph  ->  I  e.  X )
frmdup.a  |-  ( ph  ->  A : I --> B )
Assertion
Ref Expression
frmdup1  |-  ( ph  ->  E  e.  ( M MndHom  G ) )
Distinct variable groups:    x, A    x, B    x, G    ph, x    x, I
Allowed substitution hints:    E( x)    M( x)    X( x)

Proof of Theorem frmdup1
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup.i . . . 4  |-  ( ph  ->  I  e.  X )
2 frmdup.m . . . . 5  |-  M  =  (freeMnd `  I )
32frmdmnd 14759 . . . 4  |-  ( I  e.  X  ->  M  e.  Mnd )
41, 3syl 16 . . 3  |-  ( ph  ->  M  e.  Mnd )
5 frmdup.g . . 3  |-  ( ph  ->  G  e.  Mnd )
64, 5jca 519 . 2  |-  ( ph  ->  ( M  e.  Mnd  /\  G  e.  Mnd )
)
75adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e. Word  I )  ->  G  e.  Mnd )
8 simpr 448 . . . . . . 7  |-  ( (
ph  /\  x  e. Word  I )  ->  x  e. Word  I )
9 frmdup.a . . . . . . . 8  |-  ( ph  ->  A : I --> B )
109adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e. Word  I )  ->  A :
I --> B )
11 wrdco 11755 . . . . . . 7  |-  ( ( x  e. Word  I  /\  A : I --> B )  ->  ( A  o.  x )  e. Word  B
)
128, 10, 11syl2anc 643 . . . . . 6  |-  ( (
ph  /\  x  e. Word  I )  ->  ( A  o.  x )  e. Word  B
)
13 frmdup.b . . . . . . 7  |-  B  =  ( Base `  G
)
1413gsumwcl 14741 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( A  o.  x
)  e. Word  B )  ->  ( G  gsumg  ( A  o.  x
) )  e.  B
)
157, 12, 14syl2anc 643 . . . . 5  |-  ( (
ph  /\  x  e. Word  I )  ->  ( G  gsumg  ( A  o.  x ) )  e.  B )
16 frmdup.e . . . . 5  |-  E  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )
1715, 16fmptd 5852 . . . 4  |-  ( ph  ->  E :Word  I --> B )
18 eqid 2404 . . . . . . 7  |-  ( Base `  M )  =  (
Base `  M )
192, 18frmdbas 14752 . . . . . 6  |-  ( I  e.  X  ->  ( Base `  M )  = Word 
I )
201, 19syl 16 . . . . 5  |-  ( ph  ->  ( Base `  M
)  = Word  I )
2120feq2d 5540 . . . 4  |-  ( ph  ->  ( E : (
Base `  M ) --> B 
<->  E :Word  I --> B ) )
2217, 21mpbird 224 . . 3  |-  ( ph  ->  E : ( Base `  M ) --> B )
232, 18frmdelbas 14753 . . . . . . . . 9  |-  ( y  e.  ( Base `  M
)  ->  y  e. Word  I )
2423ad2antrl 709 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  y  e. Word  I )
252, 18frmdelbas 14753 . . . . . . . . 9  |-  ( z  e.  ( Base `  M
)  ->  z  e. Word  I )
2625ad2antll 710 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  z  e. Word  I )
279adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  A : I --> B )
28 ccatco 11759 . . . . . . . 8  |-  ( ( y  e. Word  I  /\  z  e. Word  I  /\  A : I --> B )  ->  ( A  o.  ( y concat  z )
)  =  ( ( A  o.  y ) concat 
( A  o.  z
) ) )
2924, 26, 27, 28syl3anc 1184 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( A  o.  ( y concat  z ) )  =  ( ( A  o.  y
) concat  ( A  o.  z
) ) )
3029oveq2d 6056 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( G  gsumg  ( A  o.  (
y concat  z ) ) )  =  ( G  gsumg  ( ( A  o.  y ) concat 
( A  o.  z
) ) ) )
315adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  G  e.  Mnd )
32 wrdco 11755 . . . . . . . 8  |-  ( ( y  e. Word  I  /\  A : I --> B )  ->  ( A  o.  y )  e. Word  B
)
3324, 27, 32syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( A  o.  y )  e. Word  B )
34 wrdco 11755 . . . . . . . 8  |-  ( ( z  e. Word  I  /\  A : I --> B )  ->  ( A  o.  z )  e. Word  B
)
3526, 27, 34syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( A  o.  z )  e. Word  B )
36 eqid 2404 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
3713, 36gsumccat 14742 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( A  o.  y
)  e. Word  B  /\  ( A  o.  z
)  e. Word  B )  ->  ( G  gsumg  ( ( A  o.  y ) concat  ( A  o.  z ) ) )  =  ( ( G 
gsumg  ( A  o.  y
) ) ( +g  `  G ) ( G 
gsumg  ( A  o.  z
) ) ) )
3831, 33, 35, 37syl3anc 1184 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( G  gsumg  ( ( A  o.  y ) concat  ( A  o.  z ) ) )  =  ( ( G 
gsumg  ( A  o.  y
) ) ( +g  `  G ) ( G 
gsumg  ( A  o.  z
) ) ) )
3930, 38eqtrd 2436 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( G  gsumg  ( A  o.  (
y concat  z ) ) )  =  ( ( G 
gsumg  ( A  o.  y
) ) ( +g  `  G ) ( G 
gsumg  ( A  o.  z
) ) ) )
40 eqid 2404 . . . . . . . . 9  |-  ( +g  `  M )  =  ( +g  `  M )
412, 18, 40frmdadd 14755 . . . . . . . 8  |-  ( ( y  e.  ( Base `  M )  /\  z  e.  ( Base `  M
) )  ->  (
y ( +g  `  M
) z )  =  ( y concat  z ) )
4241adantl 453 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  (
y ( +g  `  M
) z )  =  ( y concat  z ) )
4342fveq2d 5691 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( E `  ( y
( +g  `  M ) z ) )  =  ( E `  (
y concat  z ) ) )
44 ccatcl 11698 . . . . . . . 8  |-  ( ( y  e. Word  I  /\  z  e. Word  I )  ->  ( y concat  z )  e. Word  I )
4524, 26, 44syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  (
y concat  z )  e. Word  I
)
46 coeq2 4990 . . . . . . . . 9  |-  ( x  =  ( y concat  z
)  ->  ( A  o.  x )  =  ( A  o.  ( y concat 
z ) ) )
4746oveq2d 6056 . . . . . . . 8  |-  ( x  =  ( y concat  z
)  ->  ( G  gsumg  ( A  o.  x ) )  =  ( G 
gsumg  ( A  o.  (
y concat  z ) ) ) )
48 ovex 6065 . . . . . . . 8  |-  ( G 
gsumg  ( A  o.  x
) )  e.  _V
4947, 16, 48fvmpt3i 5768 . . . . . . 7  |-  ( ( y concat  z )  e. Word 
I  ->  ( E `  ( y concat  z ) )  =  ( G 
gsumg  ( A  o.  (
y concat  z ) ) ) )
5045, 49syl 16 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( E `  ( y concat  z ) )  =  ( G  gsumg  ( A  o.  (
y concat  z ) ) ) )
5143, 50eqtrd 2436 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( E `  ( y
( +g  `  M ) z ) )  =  ( G  gsumg  ( A  o.  (
y concat  z ) ) ) )
52 coeq2 4990 . . . . . . . . 9  |-  ( x  =  y  ->  ( A  o.  x )  =  ( A  o.  y ) )
5352oveq2d 6056 . . . . . . . 8  |-  ( x  =  y  ->  ( G  gsumg  ( A  o.  x
) )  =  ( G  gsumg  ( A  o.  y
) ) )
5453, 16, 48fvmpt3i 5768 . . . . . . 7  |-  ( y  e. Word  I  ->  ( E `  y )  =  ( G  gsumg  ( A  o.  y ) ) )
55 coeq2 4990 . . . . . . . . 9  |-  ( x  =  z  ->  ( A  o.  x )  =  ( A  o.  z ) )
5655oveq2d 6056 . . . . . . . 8  |-  ( x  =  z  ->  ( G  gsumg  ( A  o.  x
) )  =  ( G  gsumg  ( A  o.  z
) ) )
5756, 16, 48fvmpt3i 5768 . . . . . . 7  |-  ( z  e. Word  I  ->  ( E `  z )  =  ( G  gsumg  ( A  o.  z ) ) )
5854, 57oveqan12d 6059 . . . . . 6  |-  ( ( y  e. Word  I  /\  z  e. Word  I )  ->  ( ( E `  y ) ( +g  `  G ) ( E `
 z ) )  =  ( ( G 
gsumg  ( A  o.  y
) ) ( +g  `  G ) ( G 
gsumg  ( A  o.  z
) ) ) )
5924, 26, 58syl2anc 643 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  (
( E `  y
) ( +g  `  G
) ( E `  z ) )  =  ( ( G  gsumg  ( A  o.  y ) ) ( +g  `  G
) ( G  gsumg  ( A  o.  z ) ) ) )
6039, 51, 593eqtr4d 2446 . . . 4  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( E `  ( y
( +g  `  M ) z ) )  =  ( ( E `  y ) ( +g  `  G ) ( E `
 z ) ) )
6160ralrimivva 2758 . . 3  |-  ( ph  ->  A. y  e.  (
Base `  M ) A. z  e.  ( Base `  M ) ( E `  ( y ( +g  `  M
) z ) )  =  ( ( E `
 y ) ( +g  `  G ) ( E `  z
) ) )
62 wrd0 11687 . . . 4  |-  (/)  e. Word  I
63 coeq2 4990 . . . . . . . 8  |-  ( x  =  (/)  ->  ( A  o.  x )  =  ( A  o.  (/) ) )
64 co02 5342 . . . . . . . 8  |-  ( A  o.  (/) )  =  (/)
6563, 64syl6eq 2452 . . . . . . 7  |-  ( x  =  (/)  ->  ( A  o.  x )  =  (/) )
6665oveq2d 6056 . . . . . 6  |-  ( x  =  (/)  ->  ( G 
gsumg  ( A  o.  x
) )  =  ( G  gsumg  (/) ) )
67 eqid 2404 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
6867gsum0 14735 . . . . . 6  |-  ( G 
gsumg  (/) )  =  ( 0g
`  G )
6966, 68syl6eq 2452 . . . . 5  |-  ( x  =  (/)  ->  ( G 
gsumg  ( A  o.  x
) )  =  ( 0g `  G ) )
7069, 16, 48fvmpt3i 5768 . . . 4  |-  ( (/)  e. Word  I  ->  ( E `  (/) )  =  ( 0g `  G ) )
7162, 70mp1i 12 . . 3  |-  ( ph  ->  ( E `  (/) )  =  ( 0g `  G
) )
7222, 61, 713jca 1134 . 2  |-  ( ph  ->  ( E : (
Base `  M ) --> B  /\  A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( E `  ( y ( +g  `  M ) z ) )  =  ( ( E `  y ) ( +g  `  G
) ( E `  z ) )  /\  ( E `  (/) )  =  ( 0g `  G
) ) )
732frmd0 14760 . . 3  |-  (/)  =  ( 0g `  M )
7418, 13, 40, 36, 73, 67ismhm 14695 . 2  |-  ( E  e.  ( M MndHom  G
)  <->  ( ( M  e.  Mnd  /\  G  e.  Mnd )  /\  ( E : ( Base `  M
) --> B  /\  A. y  e.  ( Base `  M ) A. z  e.  ( Base `  M
) ( E `  ( y ( +g  `  M ) z ) )  =  ( ( E `  y ) ( +g  `  G
) ( E `  z ) )  /\  ( E `  (/) )  =  ( 0g `  G
) ) ) )
756, 72, 74sylanbrc 646 1  |-  ( ph  ->  E  e.  ( M MndHom  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   (/)c0 3588    e. cmpt 4226    o. ccom 4841   -->wf 5409   ` cfv 5413  (class class class)co 6040  Word cword 11672   concat cconcat 11673   Basecbs 13424   +g cplusg 13484   0gc0g 13678    gsumg cgsu 13679   Mndcmnd 14639   MndHom cmhm 14691  freeMndcfrmd 14747
This theorem is referenced by:  frmdup3  14766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-fzo 11091  df-seq 11279  df-hash 11574  df-word 11678  df-concat 11679  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-0g 13682  df-gsum 13683  df-mnd 14645  df-mhm 14693  df-submnd 14694  df-frmd 14749
  Copyright terms: Public domain W3C validator