Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup1 Structured version   Unicode version

Theorem frmdup1 16248
 Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdup.m freeMnd
frmdup.b
frmdup.e Word g
frmdup.g
frmdup.i
frmdup.a
Assertion
Ref Expression
frmdup1 MndHom
Distinct variable groups:   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem frmdup1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup.i . . . 4
2 frmdup.m . . . . 5 freeMnd
32frmdmnd 16243 . . . 4
41, 3syl 17 . . 3
5 frmdup.g . . 3
64, 5jca 530 . 2
75adantr 463 . . . . . 6 Word
8 simpr 459 . . . . . . 7 Word Word
9 frmdup.a . . . . . . . 8
109adantr 463 . . . . . . 7 Word
11 wrdco 12760 . . . . . . 7 Word Word
128, 10, 11syl2anc 659 . . . . . 6 Word Word
13 frmdup.b . . . . . . 7
1413gsumwcl 16224 . . . . . 6 Word g
157, 12, 14syl2anc 659 . . . . 5 Word g
16 frmdup.e . . . . 5 Word g
1715, 16fmptd 5989 . . . 4 Word
18 eqid 2402 . . . . . . 7
192, 18frmdbas 16236 . . . . . 6 Word
201, 19syl 17 . . . . 5 Word
2120feq2d 5657 . . . 4 Word
2217, 21mpbird 232 . . 3
232, 18frmdelbas 16237 . . . . . . . . 9 Word
2423ad2antrl 726 . . . . . . . 8 Word
252, 18frmdelbas 16237 . . . . . . . . 9 Word
2625ad2antll 727 . . . . . . . 8 Word
279adantr 463 . . . . . . . 8
28 ccatco 12764 . . . . . . . 8 Word Word ++ ++
2924, 26, 27, 28syl3anc 1230 . . . . . . 7 ++ ++
3029oveq2d 6250 . . . . . 6 g ++ g ++
315adantr 463 . . . . . . 7
32 wrdco 12760 . . . . . . . 8 Word Word
3324, 27, 32syl2anc 659 . . . . . . 7 Word
34 wrdco 12760 . . . . . . . 8 Word Word
3526, 27, 34syl2anc 659 . . . . . . 7 Word
36 eqid 2402 . . . . . . . 8
3713, 36gsumccat 16225 . . . . . . 7 Word Word g ++ g g
3831, 33, 35, 37syl3anc 1230 . . . . . 6 g ++ g g
3930, 38eqtrd 2443 . . . . 5 g ++ g g
40 eqid 2402 . . . . . . . . 9
412, 18, 40frmdadd 16239 . . . . . . . 8 ++
4241adantl 464 . . . . . . 7 ++
4342fveq2d 5809 . . . . . 6 ++
44 ccatcl 12554 . . . . . . . 8 Word Word ++ Word
4524, 26, 44syl2anc 659 . . . . . . 7 ++ Word
46 coeq2 5103 . . . . . . . . 9 ++ ++
4746oveq2d 6250 . . . . . . . 8 ++ g g ++
48 ovex 6262 . . . . . . . 8 g
4947, 16, 48fvmpt3i 5893 . . . . . . 7 ++ Word ++ g ++
5045, 49syl 17 . . . . . 6 ++ g ++
5143, 50eqtrd 2443 . . . . 5 g ++
52 coeq2 5103 . . . . . . . . 9
5352oveq2d 6250 . . . . . . . 8 g g
5453, 16, 48fvmpt3i 5893 . . . . . . 7 Word g
55 coeq2 5103 . . . . . . . . 9
5655oveq2d 6250 . . . . . . . 8 g g
5756, 16, 48fvmpt3i 5893 . . . . . . 7 Word g
5854, 57oveqan12d 6253 . . . . . 6 Word Word g g
5924, 26, 58syl2anc 659 . . . . 5 g g
6039, 51, 593eqtr4d 2453 . . . 4
6160ralrimivva 2824 . . 3
62 wrd0 12525 . . . 4 Word
63 coeq2 5103 . . . . . . . 8
64 co02 5458 . . . . . . . 8
6563, 64syl6eq 2459 . . . . . . 7
6665oveq2d 6250 . . . . . 6 g g
67 eqid 2402 . . . . . . 7
6867gsum0 16121 . . . . . 6 g
6966, 68syl6eq 2459 . . . . 5 g
7069, 16, 48fvmpt3i 5893 . . . 4 Word
7162, 70mp1i 13 . . 3
7222, 61, 713jca 1177 . 2
732frmd0 16244 . . 3
7418, 13, 40, 36, 73, 67ismhm 16184 . 2 MndHom
756, 72, 74sylanbrc 662 1 MndHom
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 367   w3a 974   wceq 1405   wcel 1842  wral 2753  c0 3737   cmpt 4452   ccom 4946  wf 5521  cfv 5525  (class class class)co 6234  Word cword 12490   ++ cconcat 12492  cbs 14733   cplusg 14801  c0g 14946   g cgsu 14947  cmnd 16135   MndHom cmhm 16180  freeMndcfrmd 16231 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-cnex 9498  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-om 6639  df-1st 6738  df-2nd 6739  df-recs 6999  df-rdg 7033  df-1o 7087  df-oadd 7091  df-er 7268  df-map 7379  df-pm 7380  df-en 7475  df-dom 7476  df-sdom 7477  df-fin 7478  df-card 8272  df-cda 8500  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764  df-nn 10497  df-2 10555  df-n0 10757  df-z 10826  df-uz 11046  df-fz 11644  df-fzo 11768  df-seq 12062  df-hash 12360  df-word 12498  df-concat 12500  df-struct 14735  df-ndx 14736  df-slot 14737  df-base 14738  df-sets 14739  df-ress 14740  df-plusg 14814  df-0g 14948  df-gsum 14949  df-mgm 16088  df-sgrp 16127  df-mnd 16137  df-mhm 16182  df-submnd 16183  df-frmd 16233 This theorem is referenced by:  frmdup3  16251
 Copyright terms: Public domain W3C validator