MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdplusg Structured version   Unicode version

Theorem frmdplusg 15854
Description: The monoid operation of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frmdbas.m  |-  M  =  (freeMnd `  I )
frmdbas.b  |-  B  =  ( Base `  M
)
frmdplusg.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
frmdplusg  |-  .+  =  ( concat 
|`  ( B  X.  B ) )

Proof of Theorem frmdplusg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdplusg.p . . . 4  |-  .+  =  ( +g  `  M )
2 frmdbas.m . . . . . 6  |-  M  =  (freeMnd `  I )
3 frmdbas.b . . . . . . 7  |-  B  =  ( Base `  M
)
42, 3frmdbas 15852 . . . . . 6  |-  ( I  e.  _V  ->  B  = Word  I )
5 eqid 2467 . . . . . 6  |-  ( concat  |`  ( B  X.  B ) )  =  ( concat  |`  ( B  X.  B ) )
62, 4, 5frmdval 15851 . . . . 5  |-  ( I  e.  _V  ->  M  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( concat  |`  ( B  X.  B ) )
>. } )
76fveq2d 5870 . . . 4  |-  ( I  e.  _V  ->  ( +g  `  M )  =  ( +g  `  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( concat  |`  ( B  X.  B ) )
>. } ) )
81, 7syl5eq 2520 . . 3  |-  ( I  e.  _V  ->  .+  =  ( +g  `  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( concat  |`  ( B  X.  B ) ) >. } ) )
9 wrdexg 12523 . . . 4  |-  ( I  e.  _V  -> Word  I  e. 
_V )
10 ccatfn 12556 . . . . . . 7  |- concat  Fn  ( _V  X.  _V )
11 xpss 5109 . . . . . . 7  |-  ( B  X.  B )  C_  ( _V  X.  _V )
12 fnssres 5694 . . . . . . 7  |-  ( ( concat  Fn  ( _V  X.  _V )  /\  ( B  X.  B )  C_  ( _V  X.  _V ) )  ->  ( concat  |`  ( B  X.  B ) )  Fn  ( B  X.  B ) )
1310, 11, 12mp2an 672 . . . . . 6  |-  ( concat  |`  ( B  X.  B ) )  Fn  ( B  X.  B )
14 ovres 6426 . . . . . . . 8  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x ( concat  |`  ( B  X.  B ) ) y )  =  ( x concat  y ) )
152, 3frmdelbas 15853 . . . . . . . . 9  |-  ( x  e.  B  ->  x  e. Word  I )
162, 3frmdelbas 15853 . . . . . . . . 9  |-  ( y  e.  B  ->  y  e. Word  I )
17 ccatcl 12558 . . . . . . . . 9  |-  ( ( x  e. Word  I  /\  y  e. Word  I )  ->  ( x concat  y )  e. Word  I )
1815, 16, 17syl2an 477 . . . . . . . 8  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x concat  y )  e. Word  I )
1914, 18eqeltrd 2555 . . . . . . 7  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x ( concat  |`  ( B  X.  B ) ) y )  e. Word  I
)
2019rgen2a 2891 . . . . . 6  |-  A. x  e.  B  A. y  e.  B  ( x
( concat  |`  ( B  X.  B ) ) y )  e. Word  I
21 ffnov 6390 . . . . . 6  |-  ( ( concat  |`  ( B  X.  B
) ) : ( B  X.  B ) -->Word  I  <->  ( ( concat  |`  ( B  X.  B ) )  Fn  ( B  X.  B )  /\  A. x  e.  B  A. y  e.  B  (
x ( concat  |`  ( B  X.  B ) ) y )  e. Word  I
) )
2213, 20, 21mpbir2an 918 . . . . 5  |-  ( concat  |`  ( B  X.  B ) ) : ( B  X.  B ) -->Word  I
23 fvex 5876 . . . . . . 7  |-  ( Base `  M )  e.  _V
243, 23eqeltri 2551 . . . . . 6  |-  B  e. 
_V
2524, 24xpex 6588 . . . . 5  |-  ( B  X.  B )  e. 
_V
26 fex2 6739 . . . . 5  |-  ( ( ( concat  |`  ( B  X.  B ) ) : ( B  X.  B
) -->Word  I  /\  ( B  X.  B )  e. 
_V  /\ Word  I  e.  _V )  ->  ( concat  |`  ( B  X.  B ) )  e.  _V )
2722, 25, 26mp3an12 1314 . . . 4  |-  (Word  I  e.  _V  ->  ( concat  |`  ( B  X.  B ) )  e.  _V )
28 eqid 2467 . . . . 5  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( concat  |`  ( B  X.  B ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( concat  |`  ( B  X.  B ) ) >. }
2928grpplusg 14596 . . . 4  |-  ( ( concat  |`  ( B  X.  B
) )  e.  _V  ->  ( concat  |`  ( B  X.  B ) )  =  ( +g  `  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( concat  |`  ( B  X.  B ) )
>. } ) )
309, 27, 293syl 20 . . 3  |-  ( I  e.  _V  ->  ( concat  |`  ( B  X.  B
) )  =  ( +g  `  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( concat  |`  ( B  X.  B ) ) >. } ) )
318, 30eqtr4d 2511 . 2  |-  ( I  e.  _V  ->  .+  =  ( concat 
|`  ( B  X.  B ) ) )
32 fvprc 5860 . . . . . . 7  |-  ( -.  I  e.  _V  ->  (freeMnd `  I )  =  (/) )
332, 32syl5eq 2520 . . . . . 6  |-  ( -.  I  e.  _V  ->  M  =  (/) )
3433fveq2d 5870 . . . . 5  |-  ( -.  I  e.  _V  ->  ( +g  `  M )  =  ( +g  `  (/) ) )
351, 34syl5eq 2520 . . . 4  |-  ( -.  I  e.  _V  ->  .+  =  ( +g  `  (/) ) )
36 res0 5278 . . . . 5  |-  ( concat  |`  (/) )  =  (/)
37 df-plusg 14568 . . . . . 6  |-  +g  = Slot  2
3837str0 14528 . . . . 5  |-  (/)  =  ( +g  `  (/) )
3936, 38eqtr2i 2497 . . . 4  |-  ( +g  `  (/) )  =  ( concat  |`  (/) )
4035, 39syl6eq 2524 . . 3  |-  ( -.  I  e.  _V  ->  .+  =  ( concat  |`  (/) ) )
4133fveq2d 5870 . . . . . . 7  |-  ( -.  I  e.  _V  ->  (
Base `  M )  =  ( Base `  (/) ) )
42 base0 14529 . . . . . . 7  |-  (/)  =  (
Base `  (/) )
4341, 3, 423eqtr4g 2533 . . . . . 6  |-  ( -.  I  e.  _V  ->  B  =  (/) )
4443xpeq2d 5023 . . . . 5  |-  ( -.  I  e.  _V  ->  ( B  X.  B )  =  ( B  X.  (/) ) )
45 xp0 5425 . . . . 5  |-  ( B  X.  (/) )  =  (/)
4644, 45syl6eq 2524 . . . 4  |-  ( -.  I  e.  _V  ->  ( B  X.  B )  =  (/) )
4746reseq2d 5273 . . 3  |-  ( -.  I  e.  _V  ->  ( concat  |`  ( B  X.  B
) )  =  ( concat  |`  (/) ) )
4840, 47eqtr4d 2511 . 2  |-  ( -.  I  e.  _V  ->  .+  =  ( concat  |`  ( B  X.  B ) ) )
4931, 48pm2.61i 164 1  |-  .+  =  ( concat 
|`  ( B  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    C_ wss 3476   (/)c0 3785   {cpr 4029   <.cop 4033    X. cxp 4997    |` cres 5001    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284   2c2 10585  Word cword 12500   concat cconcat 12502   ndxcnx 14487   Basecbs 14490   +g cplusg 14555  freeMndcfrmd 15847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-fzo 11793  df-hash 12374  df-word 12508  df-concat 12510  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-plusg 14568  df-frmd 15849
This theorem is referenced by:  frmdadd  15855
  Copyright terms: Public domain W3C validator