MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmval Structured version   Unicode version

Theorem frlmval 18148
Description: Value of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypothesis
Ref Expression
frlmval.f  |-  F  =  ( R freeLMod  I )
Assertion
Ref Expression
frlmval  |-  ( ( R  e.  V  /\  I  e.  W )  ->  F  =  ( R 
(+)m  ( I  X.  {
(ringLMod `  R ) } ) ) )

Proof of Theorem frlmval
Dummy variables  r 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmval.f . 2  |-  F  =  ( R freeLMod  I )
2 elex 2976 . . 3  |-  ( R  e.  V  ->  R  e.  _V )
3 elex 2976 . . 3  |-  ( I  e.  W  ->  I  e.  _V )
4 id 22 . . . . 5  |-  ( r  =  R  ->  r  =  R )
5 fveq2 5686 . . . . . . 7  |-  ( r  =  R  ->  (ringLMod `  r )  =  (ringLMod `  R ) )
65sneqd 3884 . . . . . 6  |-  ( r  =  R  ->  { (ringLMod `  r ) }  =  { (ringLMod `  R ) } )
76xpeq2d 4859 . . . . 5  |-  ( r  =  R  ->  (
i  X.  { (ringLMod `  r ) } )  =  ( i  X. 
{ (ringLMod `  R ) } ) )
84, 7oveq12d 6104 . . . 4  |-  ( r  =  R  ->  (
r  (+)m  ( i  X.  {
(ringLMod `  r ) } ) )  =  ( R  (+)m  ( i  X.  {
(ringLMod `  R ) } ) ) )
9 xpeq1 4849 . . . . 5  |-  ( i  =  I  ->  (
i  X.  { (ringLMod `  R ) } )  =  ( I  X.  { (ringLMod `  R ) } ) )
109oveq2d 6102 . . . 4  |-  ( i  =  I  ->  ( R  (+)m  ( i  X.  {
(ringLMod `  R ) } ) )  =  ( R  (+)m  ( I  X.  {
(ringLMod `  R ) } ) ) )
11 df-frlm 18147 . . . 4  |- freeLMod  =  ( r  e.  _V , 
i  e.  _V  |->  ( r  (+)m  ( i  X.  {
(ringLMod `  r ) } ) ) )
12 ovex 6111 . . . 4  |-  ( R 
(+)m  ( I  X.  {
(ringLMod `  R ) } ) )  e.  _V
138, 10, 11, 12ovmpt2 6221 . . 3  |-  ( ( R  e.  _V  /\  I  e.  _V )  ->  ( R freeLMod  I )  =  ( R  (+)m  (
I  X.  { (ringLMod `  R ) } ) ) )
142, 3, 13syl2an 477 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( R freeLMod  I )  =  ( R  (+)m  (
I  X.  { (ringLMod `  R ) } ) ) )
151, 14syl5eq 2482 1  |-  ( ( R  e.  V  /\  I  e.  W )  ->  F  =  ( R 
(+)m  ( I  X.  {
(ringLMod `  R ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2967   {csn 3872    X. cxp 4833   ` cfv 5413  (class class class)co 6086  ringLModcrglmod 17227    (+)m cdsmm 18131   freeLMod cfrlm 18146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-iota 5376  df-fun 5415  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-frlm 18147
This theorem is referenced by:  frlmlmod  18149  frlmpws  18150  frlmlss  18151  frlmpwsfi  18152  frlmbas  18155  frlmbasOLD  18156
  Copyright terms: Public domain W3C validator