MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsslsp Structured version   Unicode version

Theorem frlmsslsp 19291
Description: A subset of a free module obtained by restricting the support set is spanned by the relevant unit vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by AV, 24-Jun-2019.)
Hypotheses
Ref Expression
frlmsslsp.y  |-  Y  =  ( R freeLMod  I )
frlmsslsp.u  |-  U  =  ( R unitVec  I )
frlmsslsp.k  |-  K  =  ( LSpan `  Y )
frlmsslsp.b  |-  B  =  ( Base `  Y
)
frlmsslsp.z  |-  .0.  =  ( 0g `  R )
frlmsslsp.c  |-  C  =  { x  e.  B  |  ( x supp  .0.  )  C_  J }
Assertion
Ref Expression
frlmsslsp  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  ( K `  ( U " J ) )  =  C )
Distinct variable groups:    x, Y    x, U    x, B    x,  .0.    x, R    x, I    x, V    x, J    x, K
Allowed substitution hint:    C( x)

Proof of Theorem frlmsslsp
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmsslsp.y . . . . 5  |-  Y  =  ( R freeLMod  I )
21frlmlmod 19249 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  Y  e.  LMod )
323adant3 1025 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  Y  e.  LMod )
4 eqid 2420 . . . 4  |-  ( LSubSp `  Y )  =  (
LSubSp `  Y )
5 frlmsslsp.b . . . 4  |-  B  =  ( Base `  Y
)
6 frlmsslsp.z . . . 4  |-  .0.  =  ( 0g `  R )
7 frlmsslsp.c . . . 4  |-  C  =  { x  e.  B  |  ( x supp  .0.  )  C_  J }
81, 4, 5, 6, 7frlmsslss2 19270 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  C  e.  ( LSubSp `  Y )
)
9 frlmsslsp.u . . . . . . . . . 10  |-  U  =  ( R unitVec  I )
109, 1, 5uvcff 19286 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  U : I --> B )
11103adant3 1025 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  U : I --> B )
1211adantr 466 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  J )  ->  U : I --> B )
13 simp3 1007 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  J  C_  I )
1413sselda 3461 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  J )  ->  y  e.  I )
1512, 14ffvelrnd 6029 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  J )  ->  ( U `  y
)  e.  B )
16 simpl2 1009 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  J )  ->  I  e.  V )
17 eqid 2420 . . . . . . . . 9  |-  ( Base `  R )  =  (
Base `  R )
181, 17, 5frlmbasf 19260 . . . . . . . 8  |-  ( ( I  e.  V  /\  ( U `  y )  e.  B )  -> 
( U `  y
) : I --> ( Base `  R ) )
1916, 15, 18syl2anc 665 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  J )  ->  ( U `  y
) : I --> ( Base `  R ) )
20 simpll1 1044 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  J
)  /\  x  e.  ( I  \  J ) )  ->  R  e.  Ring )
21 simpll2 1045 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  J
)  /\  x  e.  ( I  \  J ) )  ->  I  e.  V )
2214adantr 466 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  J
)  /\  x  e.  ( I  \  J ) )  ->  y  e.  I )
23 eldifi 3584 . . . . . . . . 9  |-  ( x  e.  ( I  \  J )  ->  x  e.  I )
2423adantl 467 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  J
)  /\  x  e.  ( I  \  J ) )  ->  x  e.  I )
25 disjdif 3864 . . . . . . . . . 10  |-  ( J  i^i  ( I  \  J ) )  =  (/)
26 disjne 3835 . . . . . . . . . 10  |-  ( ( ( J  i^i  (
I  \  J )
)  =  (/)  /\  y  e.  J  /\  x  e.  ( I  \  J
) )  ->  y  =/=  x )
2725, 26mp3an1 1347 . . . . . . . . 9  |-  ( ( y  e.  J  /\  x  e.  ( I  \  J ) )  -> 
y  =/=  x )
2827adantll 718 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  J
)  /\  x  e.  ( I  \  J ) )  ->  y  =/=  x )
299, 20, 21, 22, 24, 28, 6uvcvv0 19285 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  J
)  /\  x  e.  ( I  \  J ) )  ->  ( ( U `  y ) `  x )  =  .0.  )
3019, 29suppss 6947 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  J )  ->  ( ( U `  y ) supp  .0.  )  C_  J )
31 oveq1 6303 . . . . . . . 8  |-  ( x  =  ( U `  y )  ->  (
x supp  .0.  )  =  ( ( U `  y ) supp  .0.  )
)
3231sseq1d 3488 . . . . . . 7  |-  ( x  =  ( U `  y )  ->  (
( x supp  .0.  )  C_  J  <->  ( ( U `
 y ) supp  .0.  )  C_  J ) )
3332, 7elrab2 3228 . . . . . 6  |-  ( ( U `  y )  e.  C  <->  ( ( U `  y )  e.  B  /\  (
( U `  y
) supp  .0.  )  C_  J ) )
3415, 30, 33sylanbrc 668 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  J )  ->  ( U `  y
)  e.  C )
3534ralrimiva 2837 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  A. y  e.  J  ( U `  y )  e.  C
)
36 ffn 5737 . . . . . . 7  |-  ( U : I --> B  ->  U  Fn  I )
3711, 36syl 17 . . . . . 6  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  U  Fn  I )
38 fnfun 5682 . . . . . 6  |-  ( U  Fn  I  ->  Fun  U )
3937, 38syl 17 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  Fun  U )
40 fndm 5684 . . . . . . 7  |-  ( U  Fn  I  ->  dom  U  =  I )
4137, 40syl 17 . . . . . 6  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  dom  U  =  I )
4213, 41sseqtr4d 3498 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  J  C_ 
dom  U )
43 funimass4 5923 . . . . 5  |-  ( ( Fun  U  /\  J  C_ 
dom  U )  -> 
( ( U " J )  C_  C  <->  A. y  e.  J  ( U `  y )  e.  C ) )
4439, 42, 43syl2anc 665 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  (
( U " J
)  C_  C  <->  A. y  e.  J  ( U `  y )  e.  C
) )
4535, 44mpbird 235 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  ( U " J )  C_  C )
46 frlmsslsp.k . . . 4  |-  K  =  ( LSpan `  Y )
474, 46lspssp 18152 . . 3  |-  ( ( Y  e.  LMod  /\  C  e.  ( LSubSp `  Y )  /\  ( U " J
)  C_  C )  ->  ( K `  ( U " J ) ) 
C_  C )
483, 8, 45, 47syl3anc 1264 . 2  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  ( K `  ( U " J ) )  C_  C )
49 simpl1 1008 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  R  e.  Ring )
50 simpl2 1009 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  I  e.  V )
51 ssrab2 3543 . . . . . . . . 9  |-  { x  e.  B  |  (
x supp  .0.  )  C_  J }  C_  B
527, 51eqsstri 3491 . . . . . . . 8  |-  C  C_  B
5352a1i 11 . . . . . . 7  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  C  C_  B )
5453sselda 3461 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  y  e.  B )
55 eqid 2420 . . . . . . 7  |-  ( .s
`  Y )  =  ( .s `  Y
)
569, 1, 5, 55uvcresum 19288 . . . . . 6  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  y  e.  B )  ->  y  =  ( Y  gsumg  ( y  oF ( .s
`  Y ) U ) ) )
5749, 50, 54, 56syl3anc 1264 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  y  =  ( Y 
gsumg  ( y  oF ( .s `  Y
) U ) ) )
58 eqid 2420 . . . . . 6  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
59 lmodabl 18076 . . . . . . . 8  |-  ( Y  e.  LMod  ->  Y  e. 
Abel )
603, 59syl 17 . . . . . . 7  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  Y  e.  Abel )
6160adantr 466 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  Y  e.  Abel )
62 imassrn 5190 . . . . . . . . . 10  |-  ( U
" J )  C_  ran  U
63 frn 5743 . . . . . . . . . . 11  |-  ( U : I --> B  ->  ran  U  C_  B )
6411, 63syl 17 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  ran  U 
C_  B )
6562, 64syl5ss 3472 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  ( U " J )  C_  B )
665, 4, 46lspcl 18140 . . . . . . . . 9  |-  ( ( Y  e.  LMod  /\  ( U " J )  C_  B )  ->  ( K `  ( U " J ) )  e.  ( LSubSp `  Y )
)
673, 65, 66syl2anc 665 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  ( K `  ( U " J ) )  e.  ( LSubSp `  Y )
)
684lsssubg 18121 . . . . . . . 8  |-  ( ( Y  e.  LMod  /\  ( K `  ( U " J ) )  e.  ( LSubSp `  Y )
)  ->  ( K `  ( U " J
) )  e.  (SubGrp `  Y ) )
693, 67, 68syl2anc 665 . . . . . . 7  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  ( K `  ( U " J ) )  e.  (SubGrp `  Y )
)
7069adantr 466 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( K `  ( U " J ) )  e.  (SubGrp `  Y
) )
711, 17, 5frlmbasf 19260 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  y  e.  B )  ->  y : I --> ( Base `  R ) )
72713ad2antl2 1168 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B )  ->  y : I --> ( Base `  R ) )
73 ffn 5737 . . . . . . . . . 10  |-  ( y : I --> ( Base `  R )  ->  y  Fn  I )
7472, 73syl 17 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B )  ->  y  Fn  I )
7537adantr 466 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B )  ->  U  Fn  I )
76 simpl2 1009 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B )  ->  I  e.  V )
77 inidm 3668 . . . . . . . . 9  |-  ( I  i^i  I )  =  I
7874, 75, 76, 76, 77offn 6547 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B )  ->  ( y  oF ( .s `  Y
) U )  Fn  I )
7954, 78syldan 472 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( y  oF ( .s `  Y
) U )  Fn  I )
8054, 74syldan 472 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  y  Fn  I )
8180adantrr 721 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I
) )  ->  y  Fn  I )
8237adantr 466 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I
) )  ->  U  Fn  I )
83 simpl2 1009 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I
) )  ->  I  e.  V )
84 simprr 764 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I
) )  ->  z  e.  I )
85 fnfvof 6550 . . . . . . . . . . 11  |-  ( ( ( y  Fn  I  /\  U  Fn  I
)  /\  ( I  e.  V  /\  z  e.  I ) )  -> 
( ( y  oF ( .s `  Y ) U ) `
 z )  =  ( ( y `  z ) ( .s
`  Y ) ( U `  z ) ) )
8681, 82, 83, 84, 85syl22anc 1265 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I
) )  ->  (
( y  oF ( .s `  Y
) U ) `  z )  =  ( ( y `  z
) ( .s `  Y ) ( U `
 z ) ) )
873adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  J
) )  ->  Y  e.  LMod )
8867adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  J
) )  ->  ( K `  ( U " J ) )  e.  ( LSubSp `  Y )
)
8952sseli 3457 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  C  ->  y  e.  B )
9089, 72sylan2 476 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  y : I --> ( Base `  R ) )
9190adantrr 721 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  J
) )  ->  y : I --> ( Base `  R ) )
9213sselda 3461 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  z  e.  J )  ->  z  e.  I )
9392adantrl 720 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  J
) )  ->  z  e.  I )
9491, 93ffvelrnd 6029 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  J
) )  ->  (
y `  z )  e.  ( Base `  R
) )
951frlmsca 19253 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  R  =  (Scalar `  Y )
)
96953adant3 1025 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  R  =  (Scalar `  Y )
)
9796fveq2d 5876 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  ( Base `  R )  =  ( Base `  (Scalar `  Y ) ) )
9897adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  J
) )  ->  ( Base `  R )  =  ( Base `  (Scalar `  Y ) ) )
9994, 98eleqtrd 2510 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  J
) )  ->  (
y `  z )  e.  ( Base `  (Scalar `  Y ) ) )
1005, 46lspssid 18149 . . . . . . . . . . . . . . . . 17  |-  ( ( Y  e.  LMod  /\  ( U " J )  C_  B )  ->  ( U " J )  C_  ( K `  ( U
" J ) ) )
1013, 65, 100syl2anc 665 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  ( U " J )  C_  ( K `  ( U
" J ) ) )
102101adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  J
) )  ->  ( U " J )  C_  ( K `  ( U
" J ) ) )
103 funfvima2 6147 . . . . . . . . . . . . . . . . . 18  |-  ( ( Fun  U  /\  J  C_ 
dom  U )  -> 
( z  e.  J  ->  ( U `  z
)  e.  ( U
" J ) ) )
10439, 42, 103syl2anc 665 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  (
z  e.  J  -> 
( U `  z
)  e.  ( U
" J ) ) )
105104imp 430 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  z  e.  J )  ->  ( U `  z
)  e.  ( U
" J ) )
106105adantrl 720 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  J
) )  ->  ( U `  z )  e.  ( U " J
) )
107102, 106sseldd 3462 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  J
) )  ->  ( U `  z )  e.  ( K `  ( U " J ) ) )
108 eqid 2420 . . . . . . . . . . . . . . 15  |-  (Scalar `  Y )  =  (Scalar `  Y )
109 eqid 2420 . . . . . . . . . . . . . . 15  |-  ( Base `  (Scalar `  Y )
)  =  ( Base `  (Scalar `  Y )
)
110108, 55, 109, 4lssvscl 18119 . . . . . . . . . . . . . 14  |-  ( ( ( Y  e.  LMod  /\  ( K `  ( U " J ) )  e.  ( LSubSp `  Y
) )  /\  (
( y `  z
)  e.  ( Base `  (Scalar `  Y )
)  /\  ( U `  z )  e.  ( K `  ( U
" J ) ) ) )  ->  (
( y `  z
) ( .s `  Y ) ( U `
 z ) )  e.  ( K `  ( U " J ) ) )
11187, 88, 99, 107, 110syl22anc 1265 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  J
) )  ->  (
( y `  z
) ( .s `  Y ) ( U `
 z ) )  e.  ( K `  ( U " J ) ) )
112111anassrs 652 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C
)  /\  z  e.  J )  ->  (
( y `  z
) ( .s `  Y ) ( U `
 z ) )  e.  ( K `  ( U " J ) ) )
113112adantlrr 725 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  z  e.  J )  ->  ( ( y `  z ) ( .s
`  Y ) ( U `  z ) )  e.  ( K `
 ( U " J ) ) )
114 id 23 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C
) )
115114adantrr 721 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I
) )  ->  (
( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )
)
116115adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C ) )
117 simplrr 769 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  z  e.  I )
118 simpr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  -.  z  e.  J )
119117, 118eldifd 3444 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  z  e.  ( I  \  J ) )
120 oveq1 6303 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  y  ->  (
x supp  .0.  )  =  ( y supp  .0.  )
)
121120sseq1d 3488 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  y  ->  (
( x supp  .0.  )  C_  J  <->  ( y supp  .0.  )  C_  J ) )
122121, 7elrab2 3228 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  C  <->  ( y  e.  B  /\  (
y supp  .0.  )  C_  J ) )
123122simprbi 465 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  C  ->  (
y supp  .0.  )  C_  J )
124123adantl 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( y supp  .0.  )  C_  J )
125 fvex 5882 . . . . . . . . . . . . . . . . . . 19  |-  ( 0g
`  R )  e. 
_V
1266, 125eqeltri 2504 . . . . . . . . . . . . . . . . . 18  |-  .0.  e.  _V
127126a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  .0.  e.  _V )
12890, 124, 50, 127suppssr 6948 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C
)  /\  z  e.  ( I  \  J ) )  ->  ( y `  z )  =  .0.  )
129116, 119, 128syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  ( y `  z )  =  .0.  )
13096fveq2d 5876 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  Y ) ) )
1316, 130syl5eq 2473 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  .0.  =  ( 0g `  (Scalar `  Y ) ) )
132131ad2antrr 730 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  .0.  =  ( 0g `  (Scalar `  Y ) ) )
133129, 132eqtrd 2461 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  ( y `  z )  =  ( 0g `  (Scalar `  Y ) ) )
134133oveq1d 6311 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  ( (
y `  z )
( .s `  Y
) ( U `  z ) )  =  ( ( 0g `  (Scalar `  Y ) ) ( .s `  Y
) ( U `  z ) ) )
1353ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  Y  e.  LMod )
13611ffvelrnda 6028 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  z  e.  I )  ->  ( U `  z
)  e.  B )
137136adantrl 720 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I
) )  ->  ( U `  z )  e.  B )
138137adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  ( U `  z )  e.  B
)
139 eqid 2420 . . . . . . . . . . . . . . 15  |-  ( 0g
`  (Scalar `  Y )
)  =  ( 0g
`  (Scalar `  Y )
)
1405, 108, 55, 139, 58lmod0vs 18065 . . . . . . . . . . . . . 14  |-  ( ( Y  e.  LMod  /\  ( U `  z )  e.  B )  ->  (
( 0g `  (Scalar `  Y ) ) ( .s `  Y ) ( U `  z
) )  =  ( 0g `  Y ) )
141135, 138, 140syl2anc 665 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  ( ( 0g `  (Scalar `  Y
) ) ( .s
`  Y ) ( U `  z ) )  =  ( 0g
`  Y ) )
142134, 141eqtrd 2461 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  ( (
y `  z )
( .s `  Y
) ( U `  z ) )  =  ( 0g `  Y
) )
14367ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  ( K `  ( U " J
) )  e.  (
LSubSp `  Y ) )
14458, 4lss0cl 18111 . . . . . . . . . . . . 13  |-  ( ( Y  e.  LMod  /\  ( K `  ( U " J ) )  e.  ( LSubSp `  Y )
)  ->  ( 0g `  Y )  e.  ( K `  ( U
" J ) ) )
145135, 143, 144syl2anc 665 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  ( 0g `  Y )  e.  ( K `  ( U
" J ) ) )
146142, 145eqeltrd 2508 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I ) )  /\  -.  z  e.  J
)  ->  ( (
y `  z )
( .s `  Y
) ( U `  z ) )  e.  ( K `  ( U " J ) ) )
147113, 146pm2.61dan 798 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I
) )  ->  (
( y `  z
) ( .s `  Y ) ( U `
 z ) )  e.  ( K `  ( U " J ) ) )
14886, 147eqeltrd 2508 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  ( y  e.  C  /\  z  e.  I
) )  ->  (
( y  oF ( .s `  Y
) U ) `  z )  e.  ( K `  ( U
" J ) ) )
149148expr 618 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( z  e.  I  ->  ( ( y  oF ( .s `  Y ) U ) `
 z )  e.  ( K `  ( U " J ) ) ) )
150149ralrimiv 2835 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  A. z  e.  I 
( ( y  oF ( .s `  Y ) U ) `
 z )  e.  ( K `  ( U " J ) ) )
151 ffnfv 6055 . . . . . . 7  |-  ( ( y  oF ( .s `  Y ) U ) : I --> ( K `  ( U " J ) )  <-> 
( ( y  oF ( .s `  Y ) U )  Fn  I  /\  A. z  e.  I  (
( y  oF ( .s `  Y
) U ) `  z )  e.  ( K `  ( U
" J ) ) ) )
15279, 150, 151sylanbrc 668 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( y  oF ( .s `  Y
) U ) : I --> ( K `  ( U " J ) ) )
1531, 6, 5frlmbasfsupp 19258 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  y  e.  B )  ->  y finSupp  .0.  )
154153fsuppimpd 7887 . . . . . . . . 9  |-  ( ( I  e.  V  /\  y  e.  B )  ->  ( y supp  .0.  )  e.  Fin )
15550, 54, 154syl2anc 665 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( y supp  .0.  )  e.  Fin )
156 dffn2 5738 . . . . . . . . . . 11  |-  ( ( y  oF ( .s `  Y ) U )  Fn  I  <->  ( y  oF ( .s `  Y ) U ) : I --> _V )
15778, 156sylib 199 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B )  ->  ( y  oF ( .s `  Y
) U ) : I --> _V )
15874adantr 466 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B
)  /\  x  e.  ( I  \  (
y supp  .0.  ) )
)  ->  y  Fn  I )
15937ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B
)  /\  x  e.  ( I  \  (
y supp  .0.  ) )
)  ->  U  Fn  I )
160 simpll2 1045 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B
)  /\  x  e.  ( I  \  (
y supp  .0.  ) )
)  ->  I  e.  V )
161 eldifi 3584 . . . . . . . . . . . . 13  |-  ( x  e.  ( I  \ 
( y supp  .0.  )
)  ->  x  e.  I )
162161adantl 467 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B
)  /\  x  e.  ( I  \  (
y supp  .0.  ) )
)  ->  x  e.  I )
163 fnfvof 6550 . . . . . . . . . . . 12  |-  ( ( ( y  Fn  I  /\  U  Fn  I
)  /\  ( I  e.  V  /\  x  e.  I ) )  -> 
( ( y  oF ( .s `  Y ) U ) `
 x )  =  ( ( y `  x ) ( .s
`  Y ) ( U `  x ) ) )
164158, 159, 160, 162, 163syl22anc 1265 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B
)  /\  x  e.  ( I  \  (
y supp  .0.  ) )
)  ->  ( (
y  oF ( .s `  Y ) U ) `  x
)  =  ( ( y `  x ) ( .s `  Y
) ( U `  x ) ) )
165 ssid 3480 . . . . . . . . . . . . . . 15  |-  ( y supp 
.0.  )  C_  (
y supp  .0.  )
166165a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B )  ->  ( y supp  .0.  )  C_  ( y supp  .0.  )
)
167126a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B )  ->  .0.  e.  _V )
16872, 166, 76, 167suppssr 6948 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B
)  /\  x  e.  ( I  \  (
y supp  .0.  ) )
)  ->  ( y `  x )  =  .0.  )
169131ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B
)  /\  x  e.  ( I  \  (
y supp  .0.  ) )
)  ->  .0.  =  ( 0g `  (Scalar `  Y ) ) )
170168, 169eqtrd 2461 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B
)  /\  x  e.  ( I  \  (
y supp  .0.  ) )
)  ->  ( y `  x )  =  ( 0g `  (Scalar `  Y ) ) )
171170oveq1d 6311 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B
)  /\  x  e.  ( I  \  (
y supp  .0.  ) )
)  ->  ( (
y `  x )
( .s `  Y
) ( U `  x ) )  =  ( ( 0g `  (Scalar `  Y ) ) ( .s `  Y
) ( U `  x ) ) )
1723ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B
)  /\  x  e.  ( I  \  (
y supp  .0.  ) )
)  ->  Y  e.  LMod )
17311adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B )  ->  U : I --> B )
174 ffvelrn 6026 . . . . . . . . . . . . 13  |-  ( ( U : I --> B  /\  x  e.  I )  ->  ( U `  x
)  e.  B )
175173, 161, 174syl2an 479 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B
)  /\  x  e.  ( I  \  (
y supp  .0.  ) )
)  ->  ( U `  x )  e.  B
)
1765, 108, 55, 139, 58lmod0vs 18065 . . . . . . . . . . . 12  |-  ( ( Y  e.  LMod  /\  ( U `  x )  e.  B )  ->  (
( 0g `  (Scalar `  Y ) ) ( .s `  Y ) ( U `  x
) )  =  ( 0g `  Y ) )
177172, 175, 176syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B
)  /\  x  e.  ( I  \  (
y supp  .0.  ) )
)  ->  ( ( 0g `  (Scalar `  Y
) ) ( .s
`  Y ) ( U `  x ) )  =  ( 0g
`  Y ) )
178164, 171, 1773eqtrd 2465 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B
)  /\  x  e.  ( I  \  (
y supp  .0.  ) )
)  ->  ( (
y  oF ( .s `  Y ) U ) `  x
)  =  ( 0g
`  Y ) )
179157, 178suppss 6947 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  B )  ->  ( ( y  oF ( .s `  Y ) U ) supp  ( 0g `  Y
) )  C_  (
y supp  .0.  ) )
18054, 179syldan 472 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( ( y  oF ( .s `  Y ) U ) supp  ( 0g `  Y
) )  C_  (
y supp  .0.  ) )
181 ssfi 7789 . . . . . . . 8  |-  ( ( ( y supp  .0.  )  e.  Fin  /\  ( ( y  oF ( .s `  Y ) U ) supp  ( 0g
`  Y ) ) 
C_  ( y supp  .0.  ) )  ->  (
( y  oF ( .s `  Y
) U ) supp  ( 0g `  Y ) )  e.  Fin )
182155, 180, 181syl2anc 665 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( ( y  oF ( .s `  Y ) U ) supp  ( 0g `  Y
) )  e.  Fin )
183 simp2 1006 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  I  e.  V )
1841, 17, 5frlmbasmap 19259 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  y  e.  B )  ->  y  e.  ( (
Base `  R )  ^m  I ) )
185183, 89, 184syl2an 479 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  y  e.  ( (
Base `  R )  ^m  I ) )
186 elmapfn 7493 . . . . . . . . . . 11  |-  ( y  e.  ( ( Base `  R )  ^m  I
)  ->  y  Fn  I )
187185, 186syl 17 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  y  Fn  I )
18811adantr 466 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  U : I --> B )
189188, 36syl 17 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  U  Fn  I )
190187, 189, 50, 50, 77offn 6547 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( y  oF ( .s `  Y
) U )  Fn  I )
191 fnfun 5682 . . . . . . . . 9  |-  ( ( y  oF ( .s `  Y ) U )  Fn  I  ->  Fun  ( y  oF ( .s `  Y ) U ) )
192190, 191syl 17 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  Fun  ( y  oF ( .s `  Y ) U ) )
193 ovex 6324 . . . . . . . . 9  |-  ( y  oF ( .s
`  Y ) U )  e.  _V
194193a1i 11 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( y  oF ( .s `  Y
) U )  e. 
_V )
195 fvex 5882 . . . . . . . . 9  |-  ( 0g
`  Y )  e. 
_V
196195a1i 11 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( 0g `  Y
)  e.  _V )
197 funisfsupp 7885 . . . . . . . 8  |-  ( ( Fun  ( y  oF ( .s `  Y ) U )  /\  ( y  oF ( .s `  Y ) U )  e.  _V  /\  ( 0g `  Y )  e. 
_V )  ->  (
( y  oF ( .s `  Y
) U ) finSupp  ( 0g `  Y )  <->  ( (
y  oF ( .s `  Y ) U ) supp  ( 0g
`  Y ) )  e.  Fin ) )
198192, 194, 196, 197syl3anc 1264 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( ( y  oF ( .s `  Y ) U ) finSupp 
( 0g `  Y
)  <->  ( ( y  oF ( .s
`  Y ) U ) supp  ( 0g `  Y ) )  e. 
Fin ) )
199182, 198mpbird 235 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( y  oF ( .s `  Y
) U ) finSupp  ( 0g `  Y ) )
20058, 61, 50, 70, 152, 199gsumsubgcl 17494 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  ( Y  gsumg  ( y  oF ( .s `  Y
) U ) )  e.  ( K `  ( U " J ) ) )
20157, 200eqeltrd 2508 . . . 4  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  y  e.  C )  ->  y  e.  ( K `
 ( U " J ) ) )
202201ex 435 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  (
y  e.  C  -> 
y  e.  ( K `
 ( U " J ) ) ) )
203202ssrdv 3467 . 2  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  C  C_  ( K `  ( U " J ) ) )
20448, 203eqssd 3478 1  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  ( K `  ( U " J ) )  =  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867    =/= wne 2616   A.wral 2773   {crab 2777   _Vcvv 3078    \ cdif 3430    i^i cin 3432    C_ wss 3433   (/)c0 3758   class class class wbr 4417   dom cdm 4845   ran crn 4846   "cima 4848   Fun wfun 5586    Fn wfn 5587   -->wf 5588   ` cfv 5592  (class class class)co 6296    oFcof 6534   supp csupp 6916    ^m cmap 7471   Fincfn 7568   finSupp cfsupp 7880   Basecbs 15081  Scalarcsca 15153   .scvsca 15154   0gc0g 15298    gsumg cgsu 15299  SubGrpcsubg 16763   Abelcabl 17372   Ringcrg 17721   LModclmod 18032   LSubSpclss 18096   LSpanclspn 18135   freeLMod cfrlm 19246   unitVec cuvc 19277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-inf2 8137  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-iin 4296  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-se 4805  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-isom 5601  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6536  df-om 6698  df-1st 6798  df-2nd 6799  df-supp 6917  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-oadd 7185  df-er 7362  df-map 7473  df-ixp 7522  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-fsupp 7881  df-sup 7953  df-oi 8016  df-card 8363  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-nn 10599  df-2 10657  df-3 10658  df-4 10659  df-5 10660  df-6 10661  df-7 10662  df-8 10663  df-9 10664  df-10 10665  df-n0 10859  df-z 10927  df-dec 11041  df-uz 11149  df-fz 11772  df-fzo 11903  df-seq 12200  df-hash 12502  df-struct 15083  df-ndx 15084  df-slot 15085  df-base 15086  df-sets 15087  df-ress 15088  df-plusg 15163  df-mulr 15164  df-sca 15166  df-vsca 15167  df-ip 15168  df-tset 15169  df-ple 15170  df-ds 15172  df-hom 15174  df-cco 15175  df-0g 15300  df-gsum 15301  df-prds 15306  df-pws 15308  df-mre 15444  df-mrc 15445  df-acs 15447  df-mgm 16440  df-sgrp 16479  df-mnd 16489  df-mhm 16534  df-submnd 16535  df-grp 16625  df-minusg 16626  df-sbg 16627  df-mulg 16628  df-subg 16766  df-ghm 16833  df-cntz 16923  df-cmn 17373  df-abl 17374  df-mgp 17665  df-ur 17677  df-ring 17723  df-subrg 17947  df-lmod 18034  df-lss 18097  df-lsp 18136  df-lmhm 18186  df-sra 18336  df-rgmod 18337  df-dsmm 19232  df-frlm 19247  df-uvc 19278
This theorem is referenced by:  frlmlbs  19292
  Copyright terms: Public domain W3C validator