MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsplit2 Structured version   Unicode version

Theorem frlmsplit2 18156
Description: Restriction is homomorphic on free modules. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmsplit2.y  |-  Y  =  ( R freeLMod  U )
frlmsplit2.z  |-  Z  =  ( R freeLMod  V )
frlmsplit2.b  |-  B  =  ( Base `  Y
)
frlmsplit2.c  |-  C  =  ( Base `  Z
)
frlmsplit2.f  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
Assertion
Ref Expression
frlmsplit2  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y LMHom  Z ) )
Distinct variable groups:    x, Y    x, R    x, U    x, Z    x, V    x, B    x, C    x, X
Allowed substitution hint:    F( x)

Proof of Theorem frlmsplit2
StepHypRef Expression
1 simp1 983 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  R  e.  Ring )
2 simp2 984 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  U  e.  X )
3 frlmsplit2.y . . . . . . 7  |-  Y  =  ( R freeLMod  U )
4 frlmsplit2.b . . . . . . 7  |-  B  =  ( Base `  Y
)
5 eqid 2441 . . . . . . 7  |-  ( LSubSp `  ( (ringLMod `  R
)  ^s  U ) )  =  ( LSubSp `  ( (ringLMod `  R )  ^s  U ) )
63, 4, 5frlmlss 18135 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X )  ->  B  e.  ( LSubSp `  ( (ringLMod `  R )  ^s  U ) ) )
71, 2, 6syl2anc 656 . . . . 5  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  B  e.  ( LSubSp `  ( (ringLMod `  R )  ^s  U ) ) )
8 eqid 2441 . . . . . 6  |-  ( Base `  ( (ringLMod `  R
)  ^s  U ) )  =  ( Base `  (
(ringLMod `  R )  ^s  U
) )
98, 5lssss 16996 . . . . 5  |-  ( B  e.  ( LSubSp `  (
(ringLMod `  R )  ^s  U
) )  ->  B  C_  ( Base `  (
(ringLMod `  R )  ^s  U
) ) )
10 resmpt 5153 . . . . 5  |-  ( B 
C_  ( Base `  (
(ringLMod `  R )  ^s  U
) )  ->  (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  =  ( x  e.  B  |->  ( x  |`  V )
) )
117, 9, 103syl 20 . . . 4  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  =  ( x  e.  B  |->  ( x  |`  V )
) )
12 frlmsplit2.f . . . 4  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
1311, 12syl6eqr 2491 . . 3  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  =  F )
14 rlmlmod 17264 . . . . . 6  |-  ( R  e.  Ring  ->  (ringLMod `  R
)  e.  LMod )
15 eqid 2441 . . . . . . 7  |-  ( (ringLMod `  R )  ^s  U )  =  ( (ringLMod `  R
)  ^s  U )
16 eqid 2441 . . . . . . 7  |-  ( (ringLMod `  R )  ^s  V )  =  ( (ringLMod `  R
)  ^s  V )
17 eqid 2441 . . . . . . 7  |-  ( Base `  ( (ringLMod `  R
)  ^s  V ) )  =  ( Base `  (
(ringLMod `  R )  ^s  V
) )
18 eqid 2441 . . . . . . 7  |-  ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  =  ( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )
1915, 16, 8, 17, 18pwssplit3 17120 . . . . . 6  |-  ( ( (ringLMod `  R )  e.  LMod  /\  U  e.  X  /\  V  C_  U
)  ->  ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  e.  ( ( (ringLMod `  R
)  ^s  U ) LMHom  ( (ringLMod `  R )  ^s  V ) ) )
2014, 19syl3an1 1246 . . . . 5  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
x  e.  ( Base `  ( (ringLMod `  R
)  ^s  U ) )  |->  ( x  |`  V )
)  e.  ( ( (ringLMod `  R )  ^s  U ) LMHom  ( (ringLMod `  R )  ^s  V ) ) )
21 eqid 2441 . . . . . 6  |-  ( ( (ringLMod `  R )  ^s  U )s  B )  =  ( ( (ringLMod `  R
)  ^s  U )s  B )
225, 21reslmhm 17111 . . . . 5  |-  ( ( ( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  e.  ( ( (ringLMod `  R
)  ^s  U ) LMHom  ( (ringLMod `  R )  ^s  V ) )  /\  B  e.  ( LSubSp `  ( (ringLMod `  R )  ^s  U ) ) )  ->  (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( (ringLMod `  R )  ^s  V ) ) )
2320, 7, 22syl2anc 656 . . . 4  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( (ringLMod `  R )  ^s  V ) ) )
24143ad2ant1 1004 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (ringLMod `  R )  e.  LMod )
25 simp3 985 . . . . . . 7  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  V  C_  U )
262, 25ssexd 4436 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  V  e.  _V )
2716pwslmod 17029 . . . . . 6  |-  ( ( (ringLMod `  R )  e.  LMod  /\  V  e.  _V )  ->  ( (ringLMod `  R )  ^s  V )  e.  LMod )
2824, 26, 27syl2anc 656 . . . . 5  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
(ringLMod `  R )  ^s  V
)  e.  LMod )
29 frlmsplit2.z . . . . . . 7  |-  Z  =  ( R freeLMod  V )
30 frlmsplit2.c . . . . . . 7  |-  C  =  ( Base `  Z
)
31 eqid 2441 . . . . . . 7  |-  ( LSubSp `  ( (ringLMod `  R
)  ^s  V ) )  =  ( LSubSp `  ( (ringLMod `  R )  ^s  V ) )
3229, 30, 31frlmlss 18135 . . . . . 6  |-  ( ( R  e.  Ring  /\  V  e.  _V )  ->  C  e.  ( LSubSp `  ( (ringLMod `  R )  ^s  V ) ) )
331, 26, 32syl2anc 656 . . . . 5  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  C  e.  ( LSubSp `  ( (ringLMod `  R )  ^s  V ) ) )
3411rneqd 5063 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  ran  ( ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  |`  B )  =  ran  ( x  e.  B  |->  ( x  |`  V ) ) )
35 eqid 2441 . . . . . . . . . . . . 13  |-  ( Base `  R )  =  (
Base `  R )
363, 35, 4frlmbasf 18147 . . . . . . . . . . . 12  |-  ( ( U  e.  X  /\  x  e.  B )  ->  x : U --> ( Base `  R ) )
372, 36sylan 468 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  x : U --> ( Base `  R ) )
38 simpl3 988 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  V  C_  U )
39 fssres 5575 . . . . . . . . . . 11  |-  ( ( x : U --> ( Base `  R )  /\  V  C_  U )  ->  (
x  |`  V ) : V --> ( Base `  R
) )
4037, 38, 39syl2anc 656 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( x  |`  V ) : V --> ( Base `  R ) )
41 fvex 5698 . . . . . . . . . . . 12  |-  ( Base `  R )  e.  _V
42 elmapg 7223 . . . . . . . . . . . 12  |-  ( ( ( Base `  R
)  e.  _V  /\  V  e.  _V )  ->  ( ( x  |`  V )  e.  ( ( Base `  R
)  ^m  V )  <->  ( x  |`  V ) : V --> ( Base `  R
) ) )
4341, 26, 42sylancr 658 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( x  |`  V )  e.  ( ( Base `  R )  ^m  V
)  <->  ( x  |`  V ) : V --> ( Base `  R )
) )
4443adantr 462 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( ( x  |`  V )  e.  ( ( Base `  R
)  ^m  V )  <->  ( x  |`  V ) : V --> ( Base `  R
) ) )
4540, 44mpbird 232 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( x  |`  V )  e.  ( ( Base `  R )  ^m  V
) )
46 eqid 2441 . . . . . . . . . . . 12  |-  ( 0g
`  R )  =  ( 0g `  R
)
473, 46, 4frlmbasfsupp 18144 . . . . . . . . . . 11  |-  ( ( U  e.  X  /\  x  e.  B )  ->  x finSupp  ( 0g `  R ) )
482, 47sylan 468 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  x finSupp  ( 0g `  R ) )
49 fvex 5698 . . . . . . . . . . 11  |-  ( 0g
`  R )  e. 
_V
5049a1i 11 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( 0g `  R
)  e.  _V )
5148, 50fsuppres 7641 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( x  |`  V ) finSupp 
( 0g `  R
) )
5229, 35, 46, 30frlmelbas 18141 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  V  e.  _V )  ->  (
( x  |`  V )  e.  C  <->  ( (
x  |`  V )  e.  ( ( Base `  R
)  ^m  V )  /\  ( x  |`  V ) finSupp 
( 0g `  R
) ) ) )
531, 26, 52syl2anc 656 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( x  |`  V )  e.  C  <->  ( (
x  |`  V )  e.  ( ( Base `  R
)  ^m  V )  /\  ( x  |`  V ) finSupp 
( 0g `  R
) ) ) )
5453adantr 462 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( ( x  |`  V )  e.  C  <->  ( ( x  |`  V )  e.  ( ( Base `  R )  ^m  V
)  /\  ( x  |`  V ) finSupp  ( 0g
`  R ) ) ) )
5545, 51, 54mpbir2and 908 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( x  |`  V )  e.  C )
56 eqid 2441 . . . . . . . 8  |-  ( x  e.  B  |->  ( x  |`  V ) )  =  ( x  e.  B  |->  ( x  |`  V ) )
5755, 56fmptd 5864 . . . . . . 7  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
x  e.  B  |->  ( x  |`  V )
) : B --> C )
58 frn 5562 . . . . . . 7  |-  ( ( x  e.  B  |->  ( x  |`  V )
) : B --> C  ->  ran  ( x  e.  B  |->  ( x  |`  V ) )  C_  C )
5957, 58syl 16 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  ran  ( x  e.  B  |->  ( x  |`  V ) )  C_  C )
6034, 59eqsstrd 3387 . . . . 5  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  ran  ( ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  |`  B )  C_  C
)
61 eqid 2441 . . . . . 6  |-  ( ( (ringLMod `  R )  ^s  V )s  C )  =  ( ( (ringLMod `  R
)  ^s  V )s  C )
6261, 31reslmhm2b 17113 . . . . 5  |-  ( ( ( (ringLMod `  R
)  ^s  V )  e.  LMod  /\  C  e.  ( LSubSp `  ( (ringLMod `  R
)  ^s  V ) )  /\  ran  ( ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  |`  B )  C_  C
)  ->  ( (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( (ringLMod `  R )  ^s  V ) )  <->  ( ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( ( (ringLMod `  R )  ^s  V )s  C ) ) ) )
6328, 33, 60, 62syl3anc 1213 . . . 4  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( (ringLMod `  R )  ^s  V ) )  <->  ( ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( ( (ringLMod `  R )  ^s  V )s  C ) ) ) )
6423, 63mpbid 210 . . 3  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( ( (ringLMod `  R )  ^s  V )s  C ) ) )
6513, 64eqeltrrd 2516 . 2  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( ( ( (ringLMod `  R )  ^s  U )s  B ) LMHom  ( ( (ringLMod `  R )  ^s  V )s  C ) ) )
663, 4frlmpws 18134 . . . 4  |-  ( ( R  e.  Ring  /\  U  e.  X )  ->  Y  =  ( ( (ringLMod `  R )  ^s  U )s  B ) )
671, 2, 66syl2anc 656 . . 3  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  Y  =  ( ( (ringLMod `  R )  ^s  U )s  B ) )
6829, 30frlmpws 18134 . . . 4  |-  ( ( R  e.  Ring  /\  V  e.  _V )  ->  Z  =  ( ( (ringLMod `  R )  ^s  V )s  C ) )
691, 26, 68syl2anc 656 . . 3  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  Z  =  ( ( (ringLMod `  R )  ^s  V )s  C ) )
7067, 69oveq12d 6108 . 2  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  ( Y LMHom  Z )  =  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( ( (ringLMod `  R )  ^s  V )s  C ) ) )
7165, 70eleqtrrd 2518 1  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y LMHom  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   _Vcvv 2970    C_ wss 3325   class class class wbr 4289    e. cmpt 4347   ran crn 4837    |` cres 4838   -->wf 5411   ` cfv 5415  (class class class)co 6090    ^m cmap 7210   finSupp cfsupp 7616   Basecbs 14170   ↾s cress 14171   0gc0g 14374    ^s cpws 14381   Ringcrg 16635   LModclmod 16928   LSubSpclss 16991   LMHom clmhm 17078  ringLModcrglmod 17228   freeLMod cfrlm 18130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-fz 11434  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-hom 14258  df-cco 14259  df-0g 14376  df-prds 14382  df-pws 14384  df-mnd 15411  df-mhm 15460  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-subg 15671  df-ghm 15738  df-mgp 16582  df-ur 16594  df-rng 16637  df-subrg 16843  df-lmod 16930  df-lss 16992  df-lmhm 17081  df-sra 17231  df-rgmod 17232  df-dsmm 18116  df-frlm 18131
This theorem is referenced by:  frlmsslss  18157
  Copyright terms: Public domain W3C validator