MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsplit2 Structured version   Unicode version

Theorem frlmsplit2 18197
Description: Restriction is homomorphic on free modules. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmsplit2.y  |-  Y  =  ( R freeLMod  U )
frlmsplit2.z  |-  Z  =  ( R freeLMod  V )
frlmsplit2.b  |-  B  =  ( Base `  Y
)
frlmsplit2.c  |-  C  =  ( Base `  Z
)
frlmsplit2.f  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
Assertion
Ref Expression
frlmsplit2  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y LMHom  Z ) )
Distinct variable groups:    x, Y    x, R    x, U    x, Z    x, V    x, B    x, C    x, X
Allowed substitution hint:    F( x)

Proof of Theorem frlmsplit2
StepHypRef Expression
1 simp1 988 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  R  e.  Ring )
2 simp2 989 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  U  e.  X )
3 frlmsplit2.y . . . . . . 7  |-  Y  =  ( R freeLMod  U )
4 frlmsplit2.b . . . . . . 7  |-  B  =  ( Base `  Y
)
5 eqid 2443 . . . . . . 7  |-  ( LSubSp `  ( (ringLMod `  R
)  ^s  U ) )  =  ( LSubSp `  ( (ringLMod `  R )  ^s  U ) )
63, 4, 5frlmlss 18176 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X )  ->  B  e.  ( LSubSp `  ( (ringLMod `  R )  ^s  U ) ) )
71, 2, 6syl2anc 661 . . . . 5  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  B  e.  ( LSubSp `  ( (ringLMod `  R )  ^s  U ) ) )
8 eqid 2443 . . . . . 6  |-  ( Base `  ( (ringLMod `  R
)  ^s  U ) )  =  ( Base `  (
(ringLMod `  R )  ^s  U
) )
98, 5lssss 17018 . . . . 5  |-  ( B  e.  ( LSubSp `  (
(ringLMod `  R )  ^s  U
) )  ->  B  C_  ( Base `  (
(ringLMod `  R )  ^s  U
) ) )
10 resmpt 5156 . . . . 5  |-  ( B 
C_  ( Base `  (
(ringLMod `  R )  ^s  U
) )  ->  (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  =  ( x  e.  B  |->  ( x  |`  V )
) )
117, 9, 103syl 20 . . . 4  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  =  ( x  e.  B  |->  ( x  |`  V )
) )
12 frlmsplit2.f . . . 4  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
1311, 12syl6eqr 2493 . . 3  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  =  F )
14 rlmlmod 17286 . . . . . 6  |-  ( R  e.  Ring  ->  (ringLMod `  R
)  e.  LMod )
15 eqid 2443 . . . . . . 7  |-  ( (ringLMod `  R )  ^s  U )  =  ( (ringLMod `  R
)  ^s  U )
16 eqid 2443 . . . . . . 7  |-  ( (ringLMod `  R )  ^s  V )  =  ( (ringLMod `  R
)  ^s  V )
17 eqid 2443 . . . . . . 7  |-  ( Base `  ( (ringLMod `  R
)  ^s  V ) )  =  ( Base `  (
(ringLMod `  R )  ^s  V
) )
18 eqid 2443 . . . . . . 7  |-  ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  =  ( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )
1915, 16, 8, 17, 18pwssplit3 17142 . . . . . 6  |-  ( ( (ringLMod `  R )  e.  LMod  /\  U  e.  X  /\  V  C_  U
)  ->  ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  e.  ( ( (ringLMod `  R
)  ^s  U ) LMHom  ( (ringLMod `  R )  ^s  V ) ) )
2014, 19syl3an1 1251 . . . . 5  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
x  e.  ( Base `  ( (ringLMod `  R
)  ^s  U ) )  |->  ( x  |`  V )
)  e.  ( ( (ringLMod `  R )  ^s  U ) LMHom  ( (ringLMod `  R )  ^s  V ) ) )
21 eqid 2443 . . . . . 6  |-  ( ( (ringLMod `  R )  ^s  U )s  B )  =  ( ( (ringLMod `  R
)  ^s  U )s  B )
225, 21reslmhm 17133 . . . . 5  |-  ( ( ( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  e.  ( ( (ringLMod `  R
)  ^s  U ) LMHom  ( (ringLMod `  R )  ^s  V ) )  /\  B  e.  ( LSubSp `  ( (ringLMod `  R )  ^s  U ) ) )  ->  (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( (ringLMod `  R )  ^s  V ) ) )
2320, 7, 22syl2anc 661 . . . 4  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( (ringLMod `  R )  ^s  V ) ) )
24143ad2ant1 1009 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (ringLMod `  R )  e.  LMod )
25 simp3 990 . . . . . . 7  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  V  C_  U )
262, 25ssexd 4439 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  V  e.  _V )
2716pwslmod 17051 . . . . . 6  |-  ( ( (ringLMod `  R )  e.  LMod  /\  V  e.  _V )  ->  ( (ringLMod `  R )  ^s  V )  e.  LMod )
2824, 26, 27syl2anc 661 . . . . 5  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
(ringLMod `  R )  ^s  V
)  e.  LMod )
29 frlmsplit2.z . . . . . . 7  |-  Z  =  ( R freeLMod  V )
30 frlmsplit2.c . . . . . . 7  |-  C  =  ( Base `  Z
)
31 eqid 2443 . . . . . . 7  |-  ( LSubSp `  ( (ringLMod `  R
)  ^s  V ) )  =  ( LSubSp `  ( (ringLMod `  R )  ^s  V ) )
3229, 30, 31frlmlss 18176 . . . . . 6  |-  ( ( R  e.  Ring  /\  V  e.  _V )  ->  C  e.  ( LSubSp `  ( (ringLMod `  R )  ^s  V ) ) )
331, 26, 32syl2anc 661 . . . . 5  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  C  e.  ( LSubSp `  ( (ringLMod `  R )  ^s  V ) ) )
3411rneqd 5067 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  ran  ( ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  |`  B )  =  ran  ( x  e.  B  |->  ( x  |`  V ) ) )
35 eqid 2443 . . . . . . . . . . . . 13  |-  ( Base `  R )  =  (
Base `  R )
363, 35, 4frlmbasf 18188 . . . . . . . . . . . 12  |-  ( ( U  e.  X  /\  x  e.  B )  ->  x : U --> ( Base `  R ) )
372, 36sylan 471 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  x : U --> ( Base `  R ) )
38 simpl3 993 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  V  C_  U )
39 fssres 5578 . . . . . . . . . . 11  |-  ( ( x : U --> ( Base `  R )  /\  V  C_  U )  ->  (
x  |`  V ) : V --> ( Base `  R
) )
4037, 38, 39syl2anc 661 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( x  |`  V ) : V --> ( Base `  R ) )
41 fvex 5701 . . . . . . . . . . . 12  |-  ( Base `  R )  e.  _V
42 elmapg 7227 . . . . . . . . . . . 12  |-  ( ( ( Base `  R
)  e.  _V  /\  V  e.  _V )  ->  ( ( x  |`  V )  e.  ( ( Base `  R
)  ^m  V )  <->  ( x  |`  V ) : V --> ( Base `  R
) ) )
4341, 26, 42sylancr 663 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( x  |`  V )  e.  ( ( Base `  R )  ^m  V
)  <->  ( x  |`  V ) : V --> ( Base `  R )
) )
4443adantr 465 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( ( x  |`  V )  e.  ( ( Base `  R
)  ^m  V )  <->  ( x  |`  V ) : V --> ( Base `  R
) ) )
4540, 44mpbird 232 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( x  |`  V )  e.  ( ( Base `  R )  ^m  V
) )
46 eqid 2443 . . . . . . . . . . . 12  |-  ( 0g
`  R )  =  ( 0g `  R
)
473, 46, 4frlmbasfsupp 18185 . . . . . . . . . . 11  |-  ( ( U  e.  X  /\  x  e.  B )  ->  x finSupp  ( 0g `  R ) )
482, 47sylan 471 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  x finSupp  ( 0g `  R ) )
49 fvex 5701 . . . . . . . . . . 11  |-  ( 0g
`  R )  e. 
_V
5049a1i 11 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( 0g `  R
)  e.  _V )
5148, 50fsuppres 7645 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( x  |`  V ) finSupp 
( 0g `  R
) )
5229, 35, 46, 30frlmelbas 18182 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  V  e.  _V )  ->  (
( x  |`  V )  e.  C  <->  ( (
x  |`  V )  e.  ( ( Base `  R
)  ^m  V )  /\  ( x  |`  V ) finSupp 
( 0g `  R
) ) ) )
531, 26, 52syl2anc 661 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( x  |`  V )  e.  C  <->  ( (
x  |`  V )  e.  ( ( Base `  R
)  ^m  V )  /\  ( x  |`  V ) finSupp 
( 0g `  R
) ) ) )
5453adantr 465 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( ( x  |`  V )  e.  C  <->  ( ( x  |`  V )  e.  ( ( Base `  R )  ^m  V
)  /\  ( x  |`  V ) finSupp  ( 0g
`  R ) ) ) )
5545, 51, 54mpbir2and 913 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  /\  x  e.  B )  ->  ( x  |`  V )  e.  C )
56 eqid 2443 . . . . . . . 8  |-  ( x  e.  B  |->  ( x  |`  V ) )  =  ( x  e.  B  |->  ( x  |`  V ) )
5755, 56fmptd 5867 . . . . . . 7  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
x  e.  B  |->  ( x  |`  V )
) : B --> C )
58 frn 5565 . . . . . . 7  |-  ( ( x  e.  B  |->  ( x  |`  V )
) : B --> C  ->  ran  ( x  e.  B  |->  ( x  |`  V ) )  C_  C )
5957, 58syl 16 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  ran  ( x  e.  B  |->  ( x  |`  V ) )  C_  C )
6034, 59eqsstrd 3390 . . . . 5  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  ran  ( ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  |`  B )  C_  C
)
61 eqid 2443 . . . . . 6  |-  ( ( (ringLMod `  R )  ^s  V )s  C )  =  ( ( (ringLMod `  R
)  ^s  V )s  C )
6261, 31reslmhm2b 17135 . . . . 5  |-  ( ( ( (ringLMod `  R
)  ^s  V )  e.  LMod  /\  C  e.  ( LSubSp `  ( (ringLMod `  R
)  ^s  V ) )  /\  ran  ( ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  |`  B )  C_  C
)  ->  ( (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( (ringLMod `  R )  ^s  V ) )  <->  ( ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( ( (ringLMod `  R )  ^s  V )s  C ) ) ) )
6328, 33, 60, 62syl3anc 1218 . . . 4  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( (ringLMod `  R )  ^s  V ) )  <->  ( ( x  e.  ( Base `  (
(ringLMod `  R )  ^s  U
) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( ( (ringLMod `  R )  ^s  V )s  C ) ) ) )
6423, 63mpbid 210 . . 3  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  (
( x  e.  (
Base `  ( (ringLMod `  R )  ^s  U ) )  |->  ( x  |`  V ) )  |`  B )  e.  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( ( (ringLMod `  R )  ^s  V )s  C ) ) )
6513, 64eqeltrrd 2518 . 2  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( ( ( (ringLMod `  R )  ^s  U )s  B ) LMHom  ( ( (ringLMod `  R )  ^s  V )s  C ) ) )
663, 4frlmpws 18175 . . . 4  |-  ( ( R  e.  Ring  /\  U  e.  X )  ->  Y  =  ( ( (ringLMod `  R )  ^s  U )s  B ) )
671, 2, 66syl2anc 661 . . 3  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  Y  =  ( ( (ringLMod `  R )  ^s  U )s  B ) )
6829, 30frlmpws 18175 . . . 4  |-  ( ( R  e.  Ring  /\  V  e.  _V )  ->  Z  =  ( ( (ringLMod `  R )  ^s  V )s  C ) )
691, 26, 68syl2anc 661 . . 3  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  Z  =  ( ( (ringLMod `  R )  ^s  V )s  C ) )
7067, 69oveq12d 6109 . 2  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  ( Y LMHom  Z )  =  ( ( ( (ringLMod `  R
)  ^s  U )s  B ) LMHom  ( ( (ringLMod `  R )  ^s  V )s  C ) ) )
7165, 70eleqtrrd 2520 1  |-  ( ( R  e.  Ring  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y LMHom  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   _Vcvv 2972    C_ wss 3328   class class class wbr 4292    e. cmpt 4350   ran crn 4841    |` cres 4842   -->wf 5414   ` cfv 5418  (class class class)co 6091    ^m cmap 7214   finSupp cfsupp 7620   Basecbs 14174   ↾s cress 14175   0gc0g 14378    ^s cpws 14385   Ringcrg 16645   LModclmod 16948   LSubSpclss 17013   LMHom clmhm 17100  ringLModcrglmod 17250   freeLMod cfrlm 18171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-fz 11438  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-hom 14262  df-cco 14263  df-0g 14380  df-prds 14386  df-pws 14388  df-mnd 15415  df-mhm 15464  df-submnd 15465  df-grp 15545  df-minusg 15546  df-sbg 15547  df-subg 15678  df-ghm 15745  df-mgp 16592  df-ur 16604  df-rng 16647  df-subrg 16863  df-lmod 16950  df-lss 17014  df-lmhm 17103  df-sra 17253  df-rgmod 17254  df-dsmm 18157  df-frlm 18172
This theorem is referenced by:  frlmsslss  18198
  Copyright terms: Public domain W3C validator