MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmphl Structured version   Unicode version

Theorem frlmphl 18228
Description: Conditions for a free module to be a pre-Hilbert space. (Contributed by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmphl.y  |-  Y  =  ( R freeLMod  I )
frlmphl.b  |-  B  =  ( Base `  R
)
frlmphl.t  |-  .x.  =  ( .r `  R )
frlmphl.v  |-  V  =  ( Base `  Y
)
frlmphl.j  |-  .,  =  ( .i `  Y )
frlmphl.o  |-  O  =  ( 0g `  Y
)
frlmphl.0  |-  .0.  =  ( 0g `  R )
frlmphl.s  |-  .*  =  ( *r `  R )
frlmphl.f  |-  ( ph  ->  R  e. Field )
frlmphl.m  |-  ( (
ph  /\  g  e.  V  /\  ( g  .,  g )  =  .0.  )  ->  g  =  O )
frlmphl.u  |-  ( (
ph  /\  x  e.  B )  ->  (  .*  `  x )  =  x )
frlmphl.i  |-  ( ph  ->  I  e.  W )
Assertion
Ref Expression
frlmphl  |-  ( ph  ->  Y  e.  PreHil )
Distinct variable groups:    B, g, x    g, I, x    R, g, x    g, V, x   
g, W, x    .x. , g, x    g, Y, x    .0. , g, x    ph, g, x    ., , g, x    g, O   
x,  .*
Allowed substitution hints:    .* ( g)    O( x)

Proof of Theorem frlmphl
Dummy variables  f 
e  h  i  y  z  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmphl.v . . 3  |-  V  =  ( Base `  Y
)
21a1i 11 . 2  |-  ( ph  ->  V  =  ( Base `  Y ) )
3 eqidd 2444 . 2  |-  ( ph  ->  ( +g  `  Y
)  =  ( +g  `  Y ) )
4 eqidd 2444 . 2  |-  ( ph  ->  ( .s `  Y
)  =  ( .s
`  Y ) )
5 frlmphl.j . . 3  |-  .,  =  ( .i `  Y )
65a1i 11 . 2  |-  ( ph  ->  .,  =  ( .i
`  Y ) )
7 frlmphl.o . . 3  |-  O  =  ( 0g `  Y
)
87a1i 11 . 2  |-  ( ph  ->  O  =  ( 0g
`  Y ) )
9 frlmphl.f . . . . 5  |-  ( ph  ->  R  e. Field )
10 isfld 16863 . . . . 5  |-  ( R  e. Field 
<->  ( R  e.  DivRing  /\  R  e.  CRing ) )
119, 10sylib 196 . . . 4  |-  ( ph  ->  ( R  e.  DivRing  /\  R  e.  CRing ) )
1211simpld 459 . . 3  |-  ( ph  ->  R  e.  DivRing )
13 frlmphl.i . . 3  |-  ( ph  ->  I  e.  W )
14 frlmphl.y . . . 4  |-  Y  =  ( R freeLMod  I )
1514frlmsca 18200 . . 3  |-  ( ( R  e.  DivRing  /\  I  e.  W )  ->  R  =  (Scalar `  Y )
)
1612, 13, 15syl2anc 661 . 2  |-  ( ph  ->  R  =  (Scalar `  Y ) )
17 frlmphl.b . . 3  |-  B  =  ( Base `  R
)
1817a1i 11 . 2  |-  ( ph  ->  B  =  ( Base `  R ) )
19 eqidd 2444 . 2  |-  ( ph  ->  ( +g  `  R
)  =  ( +g  `  R ) )
20 frlmphl.t . . 3  |-  .x.  =  ( .r `  R )
2120a1i 11 . 2  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
22 frlmphl.s . . 3  |-  .*  =  ( *r `  R )
2322a1i 11 . 2  |-  ( ph  ->  .*  =  ( *r `  R ) )
24 frlmphl.0 . . 3  |-  .0.  =  ( 0g `  R )
2524a1i 11 . 2  |-  ( ph  ->  .0.  =  ( 0g
`  R ) )
26 drngrng 16861 . . . . 5  |-  ( R  e.  DivRing  ->  R  e.  Ring )
2712, 26syl 16 . . . 4  |-  ( ph  ->  R  e.  Ring )
2814frlmlmod 18196 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  W )  ->  Y  e.  LMod )
2927, 13, 28syl2anc 661 . . 3  |-  ( ph  ->  Y  e.  LMod )
3016, 12eqeltrrd 2518 . . 3  |-  ( ph  ->  (Scalar `  Y )  e.  DivRing )
31 eqid 2443 . . . 4  |-  (Scalar `  Y )  =  (Scalar `  Y )
3231islvec 17207 . . 3  |-  ( Y  e.  LVec  <->  ( Y  e. 
LMod  /\  (Scalar `  Y
)  e.  DivRing ) )
3329, 30, 32sylanbrc 664 . 2  |-  ( ph  ->  Y  e.  LVec )
3411simprd 463 . . 3  |-  ( ph  ->  R  e.  CRing )
35 frlmphl.u . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .*  `  x )  =  x )
3617, 22, 34, 35idsrngd 16969 . 2  |-  ( ph  ->  R  e.  *Ring )
37133ad2ant1 1009 . . . . 5  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  I  e.  W )
38273ad2ant1 1009 . . . . 5  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  R  e.  Ring )
39 simp2 989 . . . . 5  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  g  e.  V )
40 simp3 990 . . . . 5  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  h  e.  V )
4114, 17, 20, 1, 5frlmipval 18226 . . . . 5  |-  ( ( ( I  e.  W  /\  R  e.  Ring )  /\  ( g  e.  V  /\  h  e.  V ) )  -> 
( g  .,  h
)  =  ( R 
gsumg  ( g  oF  .x.  h ) ) )
4237, 38, 39, 40, 41syl22anc 1219 . . . 4  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  ( g  .,  h )  =  ( R  gsumg  ( g  oF  .x.  h ) ) )
4314, 17, 1frlmbasmap 18209 . . . . . . . . 9  |-  ( ( I  e.  W  /\  g  e.  V )  ->  g  e.  ( B  ^m  I ) )
4437, 39, 43syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  g  e.  ( B  ^m  I ) )
45 elmapi 7255 . . . . . . . 8  |-  ( g  e.  ( B  ^m  I )  ->  g : I --> B )
4644, 45syl 16 . . . . . . 7  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  g :
I --> B )
47 ffn 5580 . . . . . . 7  |-  ( g : I --> B  -> 
g  Fn  I )
4846, 47syl 16 . . . . . 6  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  g  Fn  I )
4914, 17, 1frlmbasmap 18209 . . . . . . . . 9  |-  ( ( I  e.  W  /\  h  e.  V )  ->  h  e.  ( B  ^m  I ) )
5037, 40, 49syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  h  e.  ( B  ^m  I ) )
51 elmapi 7255 . . . . . . . 8  |-  ( h  e.  ( B  ^m  I )  ->  h : I --> B )
5250, 51syl 16 . . . . . . 7  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  h :
I --> B )
53 ffn 5580 . . . . . . 7  |-  ( h : I --> B  ->  h  Fn  I )
5452, 53syl 16 . . . . . 6  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  h  Fn  I )
55 inidm 3580 . . . . . 6  |-  ( I  i^i  I )  =  I
56 eqidd 2444 . . . . . 6  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  x  e.  I )  ->  (
g `  x )  =  ( g `  x ) )
57 eqidd 2444 . . . . . 6  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  x  e.  I )  ->  (
h `  x )  =  ( h `  x ) )
5848, 54, 37, 37, 55, 56, 57offval 6348 . . . . 5  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  ( g  oF  .x.  h )  =  ( x  e.  I  |->  ( ( g `
 x )  .x.  ( h `  x
) ) ) )
5958oveq2d 6128 . . . 4  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  ( R  gsumg  ( g  oF  .x.  h ) )  =  ( R  gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
h `  x )
) ) ) )
6042, 59eqtrd 2475 . . 3  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  ( g  .,  h )  =  ( R  gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
h `  x )
) ) ) )
61 rngcmn 16697 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. CMnd
)
6227, 61syl 16 . . . . 5  |-  ( ph  ->  R  e. CMnd )
63623ad2ant1 1009 . . . 4  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  R  e. CMnd )
6438adantr 465 . . . . . 6  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  x  e.  I )  ->  R  e.  Ring )
6546ffvelrnda 5864 . . . . . 6  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  x  e.  I )  ->  (
g `  x )  e.  B )
6652ffvelrnda 5864 . . . . . 6  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  x  e.  I )  ->  (
h `  x )  e.  B )
6717, 20rngcl 16680 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
g `  x )  e.  B  /\  (
h `  x )  e.  B )  ->  (
( g `  x
)  .x.  ( h `  x ) )  e.  B )
6864, 65, 66, 67syl3anc 1218 . . . . 5  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  x  e.  I )  ->  (
( g `  x
)  .x.  ( h `  x ) )  e.  B )
69 eqid 2443 . . . . 5  |-  ( x  e.  I  |->  ( ( g `  x ) 
.x.  ( h `  x ) ) )  =  ( x  e.  I  |->  ( ( g `
 x )  .x.  ( h `  x
) ) )
7068, 69fmptd 5888 . . . 4  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  ( x  e.  I  |->  ( ( g `  x ) 
.x.  ( h `  x ) ) ) : I --> B )
71 frlmphl.m . . . . 5  |-  ( (
ph  /\  g  e.  V  /\  ( g  .,  g )  =  .0.  )  ->  g  =  O )
7214, 17, 20, 1, 5, 7, 24, 22, 9, 71, 35, 13frlmphllem 18227 . . . 4  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  ( x  e.  I  |->  ( ( g `  x ) 
.x.  ( h `  x ) ) ) finSupp  .0.  )
7317, 24, 63, 37, 70, 72gsumcl 16418 . . 3  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  ( R  gsumg  ( x  e.  I  |->  ( ( g `  x
)  .x.  ( h `  x ) ) ) )  e.  B )
7460, 73eqeltrd 2517 . 2  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  ( g  .,  h )  e.  B
)
75 eqid 2443 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
76623ad2ant1 1009 . . . 4  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  R  e. CMnd )
77133ad2ant1 1009 . . . 4  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  I  e.  W )
78273ad2ant1 1009 . . . . . 6  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  R  e.  Ring )
7978adantr 465 . . . . 5  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  R  e.  Ring )
80 simp2 989 . . . . . 6  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
k  e.  B )
8180adantr 465 . . . . 5  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  k  e.  B )
82 simp31 1024 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
g  e.  V )
8377, 82, 43syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
g  e.  ( B  ^m  I ) )
8483, 45syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
g : I --> B )
8584ffvelrnda 5864 . . . . . 6  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
g `  x )  e.  B )
86 simp33 1026 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
i  e.  V )
8714, 17, 1frlmbasmap 18209 . . . . . . . . 9  |-  ( ( I  e.  W  /\  i  e.  V )  ->  i  e.  ( B  ^m  I ) )
8877, 86, 87syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
i  e.  ( B  ^m  I ) )
89 elmapi 7255 . . . . . . . 8  |-  ( i  e.  ( B  ^m  I )  ->  i : I --> B )
9088, 89syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
i : I --> B )
9190ffvelrnda 5864 . . . . . 6  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
i `  x )  e.  B )
9217, 20rngcl 16680 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
g `  x )  e.  B  /\  (
i `  x )  e.  B )  ->  (
( g `  x
)  .x.  ( i `  x ) )  e.  B )
9379, 85, 91, 92syl3anc 1218 . . . . 5  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
( g `  x
)  .x.  ( i `  x ) )  e.  B )
9417, 20rngcl 16680 . . . . 5  |-  ( ( R  e.  Ring  /\  k  e.  B  /\  (
( g `  x
)  .x.  ( i `  x ) )  e.  B )  ->  (
k  .x.  ( (
g `  x )  .x.  ( i `  x
) ) )  e.  B )
9579, 81, 93, 94syl3anc 1218 . . . 4  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
k  .x.  ( (
g `  x )  .x.  ( i `  x
) ) )  e.  B )
96 simp32 1025 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  h  e.  V )
9777, 96, 49syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  h  e.  ( B  ^m  I ) )
9897, 51syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  h : I --> B )
9998ffvelrnda 5864 . . . . 5  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
h `  x )  e.  B )
10017, 20rngcl 16680 . . . . 5  |-  ( ( R  e.  Ring  /\  (
h `  x )  e.  B  /\  (
i `  x )  e.  B )  ->  (
( h `  x
)  .x.  ( i `  x ) )  e.  B )
10179, 99, 91, 100syl3anc 1218 . . . 4  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
( h `  x
)  .x.  ( i `  x ) )  e.  B )
102 eqidd 2444 . . . 4  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( x  e.  I  |->  ( k  .x.  (
( g `  x
)  .x.  ( i `  x ) ) ) )  =  ( x  e.  I  |->  ( k 
.x.  ( ( g `
 x )  .x.  ( i `  x
) ) ) ) )
103 eqidd 2444 . . . 4  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( x  e.  I  |->  ( ( h `  x )  .x.  (
i `  x )
) )  =  ( x  e.  I  |->  ( ( h `  x
)  .x.  ( i `  x ) ) ) )
104 fveq2 5712 . . . . . . . . 9  |-  ( x  =  y  ->  (
g `  x )  =  ( g `  y ) )
105104oveq2d 6128 . . . . . . . 8  |-  ( x  =  y  ->  (
k  .x.  ( g `  x ) )  =  ( k  .x.  (
g `  y )
) )
106105cbvmptv 4404 . . . . . . 7  |-  ( x  e.  I  |->  ( k 
.x.  ( g `  x ) ) )  =  ( y  e.  I  |->  ( k  .x.  ( g `  y
) ) )
107106oveq1i 6122 . . . . . 6  |-  ( ( x  e.  I  |->  ( k  .x.  ( g `
 x ) ) )  oF  .x.  i )  =  ( ( y  e.  I  |->  ( k  .x.  (
g `  y )
) )  oF  .x.  i )
10817, 20rngcl 16680 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  k  e.  B  /\  (
g `  x )  e.  B )  ->  (
k  .x.  ( g `  x ) )  e.  B )
10979, 81, 85, 108syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
k  .x.  ( g `  x ) )  e.  B )
110 eqid 2443 . . . . . . . . . . 11  |-  ( x  e.  I  |->  ( k 
.x.  ( g `  x ) ) )  =  ( x  e.  I  |->  ( k  .x.  ( g `  x
) ) )
111109, 110fmptd 5888 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( x  e.  I  |->  ( k  .x.  (
g `  x )
) ) : I --> B )
112 ffn 5580 . . . . . . . . . 10  |-  ( ( x  e.  I  |->  ( k  .x.  ( g `
 x ) ) ) : I --> B  -> 
( x  e.  I  |->  ( k  .x.  (
g `  x )
) )  Fn  I
)
113111, 112syl 16 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( x  e.  I  |->  ( k  .x.  (
g `  x )
) )  Fn  I
)
114106fneq1i 5526 . . . . . . . . 9  |-  ( ( x  e.  I  |->  ( k  .x.  ( g `
 x ) ) )  Fn  I  <->  ( y  e.  I  |->  ( k 
.x.  ( g `  y ) ) )  Fn  I )
115113, 114sylib 196 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( y  e.  I  |->  ( k  .x.  (
g `  y )
) )  Fn  I
)
116 ffn 5580 . . . . . . . . 9  |-  ( i : I --> B  -> 
i  Fn  I )
11790, 116syl 16 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
i  Fn  I )
118 eqidd 2444 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
y  e.  I  |->  ( k  .x.  ( g `
 y ) ) )  =  ( y  e.  I  |->  ( k 
.x.  ( g `  y ) ) ) )
119 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V
) )  /\  x  e.  I )  /\  y  =  x )  ->  y  =  x )
120119fveq2d 5716 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V
) )  /\  x  e.  I )  /\  y  =  x )  ->  (
g `  y )  =  ( g `  x ) )
121120oveq2d 6128 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V
) )  /\  x  e.  I )  /\  y  =  x )  ->  (
k  .x.  ( g `  y ) )  =  ( k  .x.  (
g `  x )
) )
122 simpr 461 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  x  e.  I )
123 ovex 6137 . . . . . . . . . 10  |-  ( k 
.x.  ( g `  x ) )  e. 
_V
124123a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
k  .x.  ( g `  x ) )  e. 
_V )
125118, 121, 122, 124fvmptd 5800 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
( y  e.  I  |->  ( k  .x.  (
g `  y )
) ) `  x
)  =  ( k 
.x.  ( g `  x ) ) )
126 eqidd 2444 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
i `  x )  =  ( i `  x ) )
127115, 117, 77, 77, 55, 125, 126offval 6348 . . . . . . 7  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( y  e.  I  |->  ( k  .x.  ( g `  y
) ) )  oF  .x.  i )  =  ( x  e.  I  |->  ( ( k 
.x.  ( g `  x ) )  .x.  ( i `  x
) ) ) )
12817, 20rngass 16683 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
k  e.  B  /\  ( g `  x
)  e.  B  /\  ( i `  x
)  e.  B ) )  ->  ( (
k  .x.  ( g `  x ) )  .x.  ( i `  x
) )  =  ( k  .x.  ( ( g `  x ) 
.x.  ( i `  x ) ) ) )
12979, 81, 85, 91, 128syl13anc 1220 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
( k  .x.  (
g `  x )
)  .x.  ( i `  x ) )  =  ( k  .x.  (
( g `  x
)  .x.  ( i `  x ) ) ) )
130129mpteq2dva 4399 . . . . . . 7  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( x  e.  I  |->  ( ( k  .x.  ( g `  x
) )  .x.  (
i `  x )
) )  =  ( x  e.  I  |->  ( k  .x.  ( ( g `  x ) 
.x.  ( i `  x ) ) ) ) )
131127, 130eqtrd 2475 . . . . . 6  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( y  e.  I  |->  ( k  .x.  ( g `  y
) ) )  oF  .x.  i )  =  ( x  e.  I  |->  ( k  .x.  ( ( g `  x )  .x.  (
i `  x )
) ) ) )
132107, 131syl5eq 2487 . . . . 5  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( x  e.  I  |->  ( k  .x.  ( g `  x
) ) )  oF  .x.  i )  =  ( x  e.  I  |->  ( k  .x.  ( ( g `  x )  .x.  (
i `  x )
) ) ) )
133 ovex 6137 . . . . . . 7  |-  ( ( x  e.  I  |->  ( k  .x.  ( g `
 x ) ) )  oF  .x.  i )  e.  _V
134133a1i 11 . . . . . 6  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( x  e.  I  |->  ( k  .x.  ( g `  x
) ) )  oF  .x.  i )  e.  _V )
135 funmpt 5475 . . . . . . 7  |-  Fun  (
z  e.  I  |->  ( ( ( x  e.  I  |->  ( k  .x.  ( g `  x
) ) ) `  z )  .x.  (
i `  z )
) )
136 eqidd 2444 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  z  e.  I )  ->  (
( x  e.  I  |->  ( k  .x.  (
g `  x )
) ) `  z
)  =  ( ( x  e.  I  |->  ( k  .x.  ( g `
 x ) ) ) `  z ) )
137 eqidd 2444 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  z  e.  I )  ->  (
i `  z )  =  ( i `  z ) )
138113, 117, 77, 77, 55, 136, 137offval 6348 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( x  e.  I  |->  ( k  .x.  ( g `  x
) ) )  oF  .x.  i )  =  ( z  e.  I  |->  ( ( ( x  e.  I  |->  ( k  .x.  ( g `
 x ) ) ) `  z ) 
.x.  ( i `  z ) ) ) )
139138funeqd 5460 . . . . . . 7  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( Fun  ( (
x  e.  I  |->  ( k  .x.  ( g `
 x ) ) )  oF  .x.  i )  <->  Fun  ( z  e.  I  |->  ( ( ( x  e.  I  |->  ( k  .x.  (
g `  x )
) ) `  z
)  .x.  ( i `  z ) ) ) ) )
140135, 139mpbiri 233 . . . . . 6  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  Fun  ( ( x  e.  I  |->  ( k  .x.  ( g `  x
) ) )  oF  .x.  i ) )
141 simp3 990 . . . . . . . . 9  |-  ( ( g  e.  V  /\  h  e.  V  /\  i  e.  V )  ->  i  e.  V )
14213, 141anim12i 566 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( I  e.  W  /\  i  e.  V
) )
1431423adant2 1007 . . . . . . 7  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( I  e.  W  /\  i  e.  V
) )
14414, 24, 1frlmbasfsupp 18207 . . . . . . 7  |-  ( ( I  e.  W  /\  i  e.  V )  ->  i finSupp  .0.  )
145143, 144syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
i finSupp  .0.  )
14617, 24rng0cl 16688 . . . . . . . 8  |-  ( R  e.  Ring  ->  .0.  e.  B )
14778, 146syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  .0.  e.  B )
14817, 20, 24rngrz 16704 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  y  e.  B )  ->  (
y  .x.  .0.  )  =  .0.  )
14978, 148sylan 471 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  y  e.  B )  ->  (
y  .x.  .0.  )  =  .0.  )
15077, 147, 111, 90, 149suppofss2d 6748 . . . . . 6  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( ( x  e.  I  |->  ( k 
.x.  ( g `  x ) ) )  oF  .x.  i
) supp  .0.  )  C_  ( i supp  .0.  )
)
151 fsuppsssupp 7657 . . . . . 6  |-  ( ( ( ( ( x  e.  I  |->  ( k 
.x.  ( g `  x ) ) )  oF  .x.  i
)  e.  _V  /\  Fun  ( ( x  e.  I  |->  ( k  .x.  ( g `  x
) ) )  oF  .x.  i ) )  /\  ( i finSupp  .0.  /\  ( ( ( x  e.  I  |->  ( k  .x.  ( g `
 x ) ) )  oF  .x.  i ) supp  .0.  )  C_  ( i supp  .0.  )
) )  ->  (
( x  e.  I  |->  ( k  .x.  (
g `  x )
) )  oF  .x.  i ) finSupp  .0.  )
152134, 140, 145, 150, 151syl22anc 1219 . . . . 5  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( x  e.  I  |->  ( k  .x.  ( g `  x
) ) )  oF  .x.  i ) finSupp  .0.  )
153132, 152eqbrtrrd 4335 . . . 4  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( x  e.  I  |->  ( k  .x.  (
( g `  x
)  .x.  ( i `  x ) ) ) ) finSupp  .0.  )
154 simp1 988 . . . . 5  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  ph )
155 eleq1 2503 . . . . . . . . 9  |-  ( g  =  h  ->  (
g  e.  V  <->  h  e.  V ) )
156 id 22 . . . . . . . . . . 11  |-  ( g  =  h  ->  g  =  h )
157156, 156oveq12d 6130 . . . . . . . . . 10  |-  ( g  =  h  ->  (
g  .,  g )  =  ( h  .,  h ) )
158157eqeq1d 2451 . . . . . . . . 9  |-  ( g  =  h  ->  (
( g  .,  g
)  =  .0.  <->  ( h  .,  h )  =  .0.  ) )
159155, 1583anbi23d 1292 . . . . . . . 8  |-  ( g  =  h  ->  (
( ph  /\  g  e.  V  /\  (
g  .,  g )  =  .0.  )  <->  ( ph  /\  h  e.  V  /\  ( h  .,  h )  =  .0.  ) ) )
160 eqeq1 2449 . . . . . . . 8  |-  ( g  =  h  ->  (
g  =  O  <->  h  =  O ) )
161159, 160imbi12d 320 . . . . . . 7  |-  ( g  =  h  ->  (
( ( ph  /\  g  e.  V  /\  ( g  .,  g
)  =  .0.  )  ->  g  =  O )  <-> 
( ( ph  /\  h  e.  V  /\  ( h  .,  h )  =  .0.  )  ->  h  =  O )
) )
162161, 71chvarv 1958 . . . . . 6  |-  ( (
ph  /\  h  e.  V  /\  ( h  .,  h )  =  .0.  )  ->  h  =  O )
16314, 17, 20, 1, 5, 7, 24, 22, 9, 162, 35, 13frlmphllem 18227 . . . . 5  |-  ( (
ph  /\  h  e.  V  /\  i  e.  V
)  ->  ( x  e.  I  |->  ( ( h `  x ) 
.x.  ( i `  x ) ) ) finSupp  .0.  )
164154, 96, 86, 163syl3anc 1218 . . . 4  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( x  e.  I  |->  ( ( h `  x )  .x.  (
i `  x )
) ) finSupp  .0.  )
16517, 24, 75, 76, 77, 95, 101, 102, 103, 153, 164gsummptfsadd 16435 . . 3  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( R  gsumg  ( x  e.  I  |->  ( ( k  .x.  ( ( g `  x )  .x.  (
i `  x )
) ) ( +g  `  R ) ( ( h `  x ) 
.x.  ( i `  x ) ) ) ) )  =  ( ( R  gsumg  ( x  e.  I  |->  ( k  .x.  (
( g `  x
)  .x.  ( i `  x ) ) ) ) ) ( +g  `  R ) ( R 
gsumg  ( x  e.  I  |->  ( ( h `  x )  .x.  (
i `  x )
) ) ) ) )
16614, 17, 20frlmip 18225 . . . . . . . . 9  |-  ( ( I  e.  W  /\  R  e.  DivRing )  -> 
( g  e.  ( B  ^m  I ) ,  h  e.  ( B  ^m  I ) 
|->  ( R  gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
h `  x )
) ) ) )  =  ( .i `  Y ) )
16713, 12, 166syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( g  e.  ( B  ^m  I ) ,  h  e.  ( B  ^m  I ) 
|->  ( R  gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
h `  x )
) ) ) )  =  ( .i `  Y ) )
168167, 5syl6reqr 2494 . . . . . . 7  |-  ( ph  ->  .,  =  ( g  e.  ( B  ^m  I ) ,  h  e.  ( B  ^m  I
)  |->  ( R  gsumg  ( x  e.  I  |->  ( ( g `  x ) 
.x.  ( h `  x ) ) ) ) ) )
169 fveq1 5711 . . . . . . . . . . 11  |-  ( e  =  g  ->  (
e `  x )  =  ( g `  x ) )
170169oveq1d 6127 . . . . . . . . . 10  |-  ( e  =  g  ->  (
( e `  x
)  .x.  ( f `  x ) )  =  ( ( g `  x )  .x.  (
f `  x )
) )
171170mpteq2dv 4400 . . . . . . . . 9  |-  ( e  =  g  ->  (
x  e.  I  |->  ( ( e `  x
)  .x.  ( f `  x ) ) )  =  ( x  e.  I  |->  ( ( g `
 x )  .x.  ( f `  x
) ) ) )
172171oveq2d 6128 . . . . . . . 8  |-  ( e  =  g  ->  ( R  gsumg  ( x  e.  I  |->  ( ( e `  x )  .x.  (
f `  x )
) ) )  =  ( R  gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
f `  x )
) ) ) )
173 fveq1 5711 . . . . . . . . . . 11  |-  ( f  =  h  ->  (
f `  x )  =  ( h `  x ) )
174173oveq2d 6128 . . . . . . . . . 10  |-  ( f  =  h  ->  (
( g `  x
)  .x.  ( f `  x ) )  =  ( ( g `  x )  .x.  (
h `  x )
) )
175174mpteq2dv 4400 . . . . . . . . 9  |-  ( f  =  h  ->  (
x  e.  I  |->  ( ( g `  x
)  .x.  ( f `  x ) ) )  =  ( x  e.  I  |->  ( ( g `
 x )  .x.  ( h `  x
) ) ) )
176175oveq2d 6128 . . . . . . . 8  |-  ( f  =  h  ->  ( R  gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
f `  x )
) ) )  =  ( R  gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
h `  x )
) ) ) )
177172, 176cbvmpt2v 6187 . . . . . . 7  |-  ( e  e.  ( B  ^m  I ) ,  f  e.  ( B  ^m  I )  |->  ( R 
gsumg  ( x  e.  I  |->  ( ( e `  x )  .x.  (
f `  x )
) ) ) )  =  ( g  e.  ( B  ^m  I
) ,  h  e.  ( B  ^m  I
)  |->  ( R  gsumg  ( x  e.  I  |->  ( ( g `  x ) 
.x.  ( h `  x ) ) ) ) )
178168, 177syl6eqr 2493 . . . . . 6  |-  ( ph  ->  .,  =  ( e  e.  ( B  ^m  I ) ,  f  e.  ( B  ^m  I )  |->  ( R 
gsumg  ( x  e.  I  |->  ( ( e `  x )  .x.  (
f `  x )
) ) ) ) )
1791783ad2ant1 1009 . . . . 5  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  .,  =  ( e  e.  ( B  ^m  I
) ,  f  e.  ( B  ^m  I
)  |->  ( R  gsumg  ( x  e.  I  |->  ( ( e `  x ) 
.x.  ( f `  x ) ) ) ) ) )
180 simprl 755 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  ( ( k ( .s `  Y
) g ) ( +g  `  Y ) h )  /\  f  =  i ) )  ->  e  =  ( ( k ( .s
`  Y ) g ) ( +g  `  Y
) h ) )
181180fveq1d 5714 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  ( ( k ( .s `  Y
) g ) ( +g  `  Y ) h )  /\  f  =  i ) )  ->  ( e `  x )  =  ( ( ( k ( .s `  Y ) g ) ( +g  `  Y ) h ) `
 x ) )
182 simprr 756 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  ( ( k ( .s `  Y
) g ) ( +g  `  Y ) h )  /\  f  =  i ) )  ->  f  =  i )
183182fveq1d 5714 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  ( ( k ( .s `  Y
) g ) ( +g  `  Y ) h )  /\  f  =  i ) )  ->  ( f `  x )  =  ( i `  x ) )
184181, 183oveq12d 6130 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  ( ( k ( .s `  Y
) g ) ( +g  `  Y ) h )  /\  f  =  i ) )  ->  ( ( e `
 x )  .x.  ( f `  x
) )  =  ( ( ( ( k ( .s `  Y
) g ) ( +g  `  Y ) h ) `  x
)  .x.  ( i `  x ) ) )
185184mpteq2dv 4400 . . . . . 6  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  ( ( k ( .s `  Y
) g ) ( +g  `  Y ) h )  /\  f  =  i ) )  ->  ( x  e.  I  |->  ( ( e `
 x )  .x.  ( f `  x
) ) )  =  ( x  e.  I  |->  ( ( ( ( k ( .s `  Y ) g ) ( +g  `  Y
) h ) `  x )  .x.  (
i `  x )
) ) )
186185oveq2d 6128 . . . . 5  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  ( ( k ( .s `  Y
) g ) ( +g  `  Y ) h )  /\  f  =  i ) )  ->  ( R  gsumg  ( x  e.  I  |->  ( ( e `  x ) 
.x.  ( f `  x ) ) ) )  =  ( R 
gsumg  ( x  e.  I  |->  ( ( ( ( k ( .s `  Y ) g ) ( +g  `  Y
) h ) `  x )  .x.  (
i `  x )
) ) ) )
187293ad2ant1 1009 . . . . . . 7  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  Y  e.  LMod )
188163ad2ant1 1009 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  R  =  (Scalar `  Y
) )
189188fveq2d 5716 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( Base `  R )  =  ( Base `  (Scalar `  Y ) ) )
19017, 189syl5eq 2487 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  B  =  ( Base `  (Scalar `  Y )
) )
19180, 190eleqtrd 2519 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
k  e.  ( Base `  (Scalar `  Y )
) )
192 eqid 2443 . . . . . . . . 9  |-  ( .s
`  Y )  =  ( .s `  Y
)
193 eqid 2443 . . . . . . . . 9  |-  ( Base `  (Scalar `  Y )
)  =  ( Base `  (Scalar `  Y )
)
1941, 31, 192, 193lmodvscl 16987 . . . . . . . 8  |-  ( ( Y  e.  LMod  /\  k  e.  ( Base `  (Scalar `  Y ) )  /\  g  e.  V )  ->  ( k ( .s
`  Y ) g )  e.  V )
195187, 191, 82, 194syl3anc 1218 . . . . . . 7  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( k ( .s
`  Y ) g )  e.  V )
196 eqid 2443 . . . . . . . 8  |-  ( +g  `  Y )  =  ( +g  `  Y )
1971, 196lmodvacl 16984 . . . . . . 7  |-  ( ( Y  e.  LMod  /\  (
k ( .s `  Y ) g )  e.  V  /\  h  e.  V )  ->  (
( k ( .s
`  Y ) g ) ( +g  `  Y
) h )  e.  V )
198187, 195, 96, 197syl3anc 1218 . . . . . 6  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( k ( .s `  Y ) g ) ( +g  `  Y ) h )  e.  V )
19914, 17, 1frlmbasmap 18209 . . . . . 6  |-  ( ( I  e.  W  /\  ( ( k ( .s `  Y ) g ) ( +g  `  Y ) h )  e.  V )  -> 
( ( k ( .s `  Y ) g ) ( +g  `  Y ) h )  e.  ( B  ^m  I ) )
20077, 198, 199syl2anc 661 . . . . 5  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( k ( .s `  Y ) g ) ( +g  `  Y ) h )  e.  ( B  ^m  I ) )
201 ovex 6137 . . . . . 6  |-  ( R 
gsumg  ( x  e.  I  |->  ( ( ( ( k ( .s `  Y ) g ) ( +g  `  Y
) h ) `  x )  .x.  (
i `  x )
) ) )  e. 
_V
202201a1i 11 . . . . 5  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( R  gsumg  ( x  e.  I  |->  ( ( ( ( k ( .s `  Y ) g ) ( +g  `  Y
) h ) `  x )  .x.  (
i `  x )
) ) )  e. 
_V )
203179, 186, 200, 88, 202ovmpt2d 6239 . . . 4  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( ( k ( .s `  Y
) g ) ( +g  `  Y ) h )  .,  i
)  =  ( R 
gsumg  ( x  e.  I  |->  ( ( ( ( k ( .s `  Y ) g ) ( +g  `  Y
) h ) `  x )  .x.  (
i `  x )
) ) ) )
20414, 1, 78, 77, 195, 96, 75, 196frlmplusgval 18213 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( k ( .s `  Y ) g ) ( +g  `  Y ) h )  =  ( ( k ( .s `  Y
) g )  oF ( +g  `  R
) h ) )
20514, 17, 1frlmbasmap 18209 . . . . . . . . . . . . 13  |-  ( ( I  e.  W  /\  ( k ( .s
`  Y ) g )  e.  V )  ->  ( k ( .s `  Y ) g )  e.  ( B  ^m  I ) )
20677, 195, 205syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( k ( .s
`  Y ) g )  e.  ( B  ^m  I ) )
207 elmapi 7255 . . . . . . . . . . . 12  |-  ( ( k ( .s `  Y ) g )  e.  ( B  ^m  I )  ->  (
k ( .s `  Y ) g ) : I --> B )
208 ffn 5580 . . . . . . . . . . . 12  |-  ( ( k ( .s `  Y ) g ) : I --> B  -> 
( k ( .s
`  Y ) g )  Fn  I )
209206, 207, 2083syl 20 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( k ( .s
`  Y ) g )  Fn  I )
21098, 53syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  ->  h  Fn  I )
21177adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  I  e.  W )
21282adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  g  e.  V )
21314, 1, 17, 211, 81, 212, 122, 192, 20frlmvscaval 18216 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
( k ( .s
`  Y ) g ) `  x )  =  ( k  .x.  ( g `  x
) ) )
214 eqidd 2444 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
h `  x )  =  ( h `  x ) )
215209, 210, 77, 77, 55, 213, 214offval 6348 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( k ( .s `  Y ) g )  oF ( +g  `  R
) h )  =  ( x  e.  I  |->  ( ( k  .x.  ( g `  x
) ) ( +g  `  R ) ( h `
 x ) ) ) )
216204, 215eqtrd 2475 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( k ( .s `  Y ) g ) ( +g  `  Y ) h )  =  ( x  e.  I  |->  ( ( k 
.x.  ( g `  x ) ) ( +g  `  R ) ( h `  x
) ) ) )
217 ovex 6137 . . . . . . . . . 10  |-  ( ( k  .x.  ( g `
 x ) ) ( +g  `  R
) ( h `  x ) )  e. 
_V
218217a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
( k  .x.  (
g `  x )
) ( +g  `  R
) ( h `  x ) )  e. 
_V )
219216, 218fvmpt2d 5804 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
( ( k ( .s `  Y ) g ) ( +g  `  Y ) h ) `
 x )  =  ( ( k  .x.  ( g `  x
) ) ( +g  `  R ) ( h `
 x ) ) )
220219oveq1d 6127 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
( ( ( k ( .s `  Y
) g ) ( +g  `  Y ) h ) `  x
)  .x.  ( i `  x ) )  =  ( ( ( k 
.x.  ( g `  x ) ) ( +g  `  R ) ( h `  x
) )  .x.  (
i `  x )
) )
22117, 75, 20rngdir 16686 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( k  .x.  (
g `  x )
)  e.  B  /\  ( h `  x
)  e.  B  /\  ( i `  x
)  e.  B ) )  ->  ( (
( k  .x.  (
g `  x )
) ( +g  `  R
) ( h `  x ) )  .x.  ( i `  x
) )  =  ( ( ( k  .x.  ( g `  x
) )  .x.  (
i `  x )
) ( +g  `  R
) ( ( h `
 x )  .x.  ( i `  x
) ) ) )
22279, 109, 99, 91, 221syl13anc 1220 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
( ( k  .x.  ( g `  x
) ) ( +g  `  R ) ( h `
 x ) ) 
.x.  ( i `  x ) )  =  ( ( ( k 
.x.  ( g `  x ) )  .x.  ( i `  x
) ) ( +g  `  R ) ( ( h `  x ) 
.x.  ( i `  x ) ) ) )
223129oveq1d 6127 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
( ( k  .x.  ( g `  x
) )  .x.  (
i `  x )
) ( +g  `  R
) ( ( h `
 x )  .x.  ( i `  x
) ) )  =  ( ( k  .x.  ( ( g `  x )  .x.  (
i `  x )
) ) ( +g  `  R ) ( ( h `  x ) 
.x.  ( i `  x ) ) ) )
224220, 222, 2233eqtrd 2479 . . . . . 6  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  x  e.  I )  ->  (
( ( ( k ( .s `  Y
) g ) ( +g  `  Y ) h ) `  x
)  .x.  ( i `  x ) )  =  ( ( k  .x.  ( ( g `  x )  .x.  (
i `  x )
) ) ( +g  `  R ) ( ( h `  x ) 
.x.  ( i `  x ) ) ) )
225224mpteq2dva 4399 . . . . 5  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( x  e.  I  |->  ( ( ( ( k ( .s `  Y ) g ) ( +g  `  Y
) h ) `  x )  .x.  (
i `  x )
) )  =  ( x  e.  I  |->  ( ( k  .x.  (
( g `  x
)  .x.  ( i `  x ) ) ) ( +g  `  R
) ( ( h `
 x )  .x.  ( i `  x
) ) ) ) )
226225oveq2d 6128 . . . 4  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( R  gsumg  ( x  e.  I  |->  ( ( ( ( k ( .s `  Y ) g ) ( +g  `  Y
) h ) `  x )  .x.  (
i `  x )
) ) )  =  ( R  gsumg  ( x  e.  I  |->  ( ( k  .x.  ( ( g `  x )  .x.  (
i `  x )
) ) ( +g  `  R ) ( ( h `  x ) 
.x.  ( i `  x ) ) ) ) ) )
227203, 226eqtrd 2475 . . 3  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( ( k ( .s `  Y
) g ) ( +g  `  Y ) h )  .,  i
)  =  ( R 
gsumg  ( x  e.  I  |->  ( ( k  .x.  ( ( g `  x )  .x.  (
i `  x )
) ) ( +g  `  R ) ( ( h `  x ) 
.x.  ( i `  x ) ) ) ) ) )
228 simprl 755 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  g  /\  f  =  i ) )  ->  e  =  g )
229228fveq1d 5714 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  g  /\  f  =  i ) )  ->  ( e `  x )  =  ( g `  x ) )
230 simprr 756 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  g  /\  f  =  i ) )  ->  f  =  i )
231230fveq1d 5714 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  g  /\  f  =  i ) )  ->  ( f `  x )  =  ( i `  x ) )
232229, 231oveq12d 6130 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  g  /\  f  =  i ) )  ->  ( ( e `
 x )  .x.  ( f `  x
) )  =  ( ( g `  x
)  .x.  ( i `  x ) ) )
233232mpteq2dv 4400 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  g  /\  f  =  i ) )  ->  ( x  e.  I  |->  ( ( e `
 x )  .x.  ( f `  x
) ) )  =  ( x  e.  I  |->  ( ( g `  x )  .x.  (
i `  x )
) ) )
234233oveq2d 6128 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  g  /\  f  =  i ) )  ->  ( R  gsumg  ( x  e.  I  |->  ( ( e `  x ) 
.x.  ( f `  x ) ) ) )  =  ( R 
gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
i `  x )
) ) ) )
235 ovex 6137 . . . . . . . 8  |-  ( R 
gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
i `  x )
) ) )  e. 
_V
236235a1i 11 . . . . . . 7  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( R  gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
i `  x )
) ) )  e. 
_V )
237179, 234, 83, 88, 236ovmpt2d 6239 . . . . . 6  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( g  .,  i
)  =  ( R 
gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
i `  x )
) ) ) )
238237oveq2d 6128 . . . . 5  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( k  .x.  (
g  .,  i )
)  =  ( k 
.x.  ( R  gsumg  ( x  e.  I  |->  ( ( g `  x ) 
.x.  ( i `  x ) ) ) ) ) )
23914, 17, 20, 1, 5, 7, 24, 22, 9, 71, 35, 13frlmphllem 18227 . . . . . . 7  |-  ( (
ph  /\  g  e.  V  /\  i  e.  V
)  ->  ( x  e.  I  |->  ( ( g `  x ) 
.x.  ( i `  x ) ) ) finSupp  .0.  )
240154, 82, 86, 239syl3anc 1218 . . . . . 6  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( x  e.  I  |->  ( ( g `  x )  .x.  (
i `  x )
) ) finSupp  .0.  )
24117, 24, 75, 20, 78, 77, 80, 93, 240gsummulc2 16718 . . . . 5  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( R  gsumg  ( x  e.  I  |->  ( k  .x.  (
( g `  x
)  .x.  ( i `  x ) ) ) ) )  =  ( k  .x.  ( R 
gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
i `  x )
) ) ) ) )
242238, 241eqtr4d 2478 . . . 4  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( k  .x.  (
g  .,  i )
)  =  ( R 
gsumg  ( x  e.  I  |->  ( k  .x.  (
( g `  x
)  .x.  ( i `  x ) ) ) ) ) )
243 simprl 755 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  h  /\  f  =  i ) )  ->  e  =  h )
244243fveq1d 5714 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  h  /\  f  =  i ) )  ->  ( e `  x )  =  ( h `  x ) )
245 simprr 756 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  h  /\  f  =  i ) )  ->  f  =  i )
246245fveq1d 5714 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  h  /\  f  =  i ) )  ->  ( f `  x )  =  ( i `  x ) )
247244, 246oveq12d 6130 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  h  /\  f  =  i ) )  ->  ( ( e `
 x )  .x.  ( f `  x
) )  =  ( ( h `  x
)  .x.  ( i `  x ) ) )
248247mpteq2dv 4400 . . . . . 6  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  h  /\  f  =  i ) )  ->  ( x  e.  I  |->  ( ( e `
 x )  .x.  ( f `  x
) ) )  =  ( x  e.  I  |->  ( ( h `  x )  .x.  (
i `  x )
) ) )
249248oveq2d 6128 . . . . 5  |-  ( ( ( ph  /\  k  e.  B  /\  (
g  e.  V  /\  h  e.  V  /\  i  e.  V )
)  /\  ( e  =  h  /\  f  =  i ) )  ->  ( R  gsumg  ( x  e.  I  |->  ( ( e `  x ) 
.x.  ( f `  x ) ) ) )  =  ( R 
gsumg  ( x  e.  I  |->  ( ( h `  x )  .x.  (
i `  x )
) ) ) )
250 ovex 6137 . . . . . 6  |-  ( R 
gsumg  ( x  e.  I  |->  ( ( h `  x )  .x.  (
i `  x )
) ) )  e. 
_V
251250a1i 11 . . . . 5  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( R  gsumg  ( x  e.  I  |->  ( ( h `  x )  .x.  (
i `  x )
) ) )  e. 
_V )
252179, 249, 97, 88, 251ovmpt2d 6239 . . . 4  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( h  .,  i
)  =  ( R 
gsumg  ( x  e.  I  |->  ( ( h `  x )  .x.  (
i `  x )
) ) ) )
253242, 252oveq12d 6130 . . 3  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( k  .x.  ( g  .,  i
) ) ( +g  `  R ) ( h 
.,  i ) )  =  ( ( R 
gsumg  ( x  e.  I  |->  ( k  .x.  (
( g `  x
)  .x.  ( i `  x ) ) ) ) ) ( +g  `  R ) ( R 
gsumg  ( x  e.  I  |->  ( ( h `  x )  .x.  (
i `  x )
) ) ) ) )
254165, 227, 2533eqtr4d 2485 . 2  |-  ( (
ph  /\  k  e.  B  /\  ( g  e.  V  /\  h  e.  V  /\  i  e.  V ) )  -> 
( ( ( k ( .s `  Y
) g ) ( +g  `  Y ) h )  .,  i
)  =  ( ( k  .x.  ( g 
.,  i ) ) ( +g  `  R
) ( h  .,  i ) ) )
255343ad2ant1 1009 . . . . . . 7  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  R  e.  CRing
)
256255adantr 465 . . . . . 6  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  x  e.  I )  ->  R  e.  CRing )
25717, 20crngcom 16681 . . . . . 6  |-  ( ( R  e.  CRing  /\  (
h `  x )  e.  B  /\  (
g `  x )  e.  B )  ->  (
( h `  x
)  .x.  ( g `  x ) )  =  ( ( g `  x )  .x.  (
h `  x )
) )
258256, 66, 65, 257syl3anc 1218 . . . . 5  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  x  e.  I )  ->  (
( h `  x
)  .x.  ( g `  x ) )  =  ( ( g `  x )  .x.  (
h `  x )
) )
259258mpteq2dva 4399 . . . 4  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  ( x  e.  I  |->  ( ( h `  x ) 
.x.  ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( g `
 x )  .x.  ( h `  x
) ) ) )
260259oveq2d 6128 . . 3  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  ( R  gsumg  ( x  e.  I  |->  ( ( h `  x
)  .x.  ( g `  x ) ) ) )  =  ( R 
gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
h `  x )
) ) ) )
2611783ad2ant1 1009 . . . 4  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  .,  =  ( e  e.  ( B  ^m  I ) ,  f  e.  ( B  ^m  I )  |->  ( R  gsumg  ( x  e.  I  |->  ( ( e `  x )  .x.  (
f `  x )
) ) ) ) )
262 simprl 755 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  (
e  =  h  /\  f  =  g )
)  ->  e  =  h )
263262fveq1d 5714 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  (
e  =  h  /\  f  =  g )
)  ->  ( e `  x )  =  ( h `  x ) )
264 simprr 756 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  (
e  =  h  /\  f  =  g )
)  ->  f  =  g )
265264fveq1d 5714 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  (
e  =  h  /\  f  =  g )
)  ->  ( f `  x )  =  ( g `  x ) )
266263, 265oveq12d 6130 . . . . . 6  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  (
e  =  h  /\  f  =  g )
)  ->  ( (
e `  x )  .x.  ( f `  x
) )  =  ( ( h `  x
)  .x.  ( g `  x ) ) )
267266mpteq2dv 4400 . . . . 5  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  (
e  =  h  /\  f  =  g )
)  ->  ( x  e.  I  |->  ( ( e `  x ) 
.x.  ( f `  x ) ) )  =  ( x  e.  I  |->  ( ( h `
 x )  .x.  ( g `  x
) ) ) )
268267oveq2d 6128 . . . 4  |-  ( ( ( ph  /\  g  e.  V  /\  h  e.  V )  /\  (
e  =  h  /\  f  =  g )
)  ->  ( R  gsumg  ( x  e.  I  |->  ( ( e `  x
)  .x.  ( f `  x ) ) ) )  =  ( R 
gsumg  ( x  e.  I  |->  ( ( h `  x )  .x.  (
g `  x )
) ) ) )
269 ovex 6137 . . . . 5  |-  ( R 
gsumg  ( x  e.  I  |->  ( ( h `  x )  .x.  (
g `  x )
) ) )  e. 
_V
270269a1i 11 . . . 4  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  ( R  gsumg  ( x  e.  I  |->  ( ( h `  x
)  .x.  ( g `  x ) ) ) )  e.  _V )
271261, 268, 50, 44, 270ovmpt2d 6239 . . 3  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  ( h  .,  g )  =  ( R  gsumg  ( x  e.  I  |->  ( ( h `  x )  .x.  (
g `  x )
) ) ) )
27235ralrimiva 2820 . . . . . 6  |-  ( ph  ->  A. x  e.  B  (  .*  `  x )  =  x )
2732723ad2ant1 1009 . . . . 5  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  A. x  e.  B  (  .*  `  x )  =  x )
274 fveq2 5712 . . . . . . 7  |-  ( x  =  ( g  .,  h )  ->  (  .*  `  x )  =  (  .*  `  (
g  .,  h )
) )
275 id 22 . . . . . . 7  |-  ( x  =  ( g  .,  h )  ->  x  =  ( g  .,  h ) )
276274, 275eqeq12d 2457 . . . . . 6  |-  ( x  =  ( g  .,  h )  ->  (
(  .*  `  x
)  =  x  <->  (  .*  `  ( g  .,  h
) )  =  ( g  .,  h ) ) )
277276rspcv 3090 . . . . 5  |-  ( ( g  .,  h )  e.  B  ->  ( A. x  e.  B  (  .*  `  x )  =  x  ->  (  .*  `  ( g  .,  h ) )  =  ( g  .,  h
) ) )
27874, 273, 277sylc 60 . . . 4  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  (  .*  `  ( g  .,  h
) )  =  ( g  .,  h ) )
279278, 60eqtrd 2475 . . 3  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  (  .*  `  ( g  .,  h
) )  =  ( R  gsumg  ( x  e.  I  |->  ( ( g `  x )  .x.  (
h `  x )
) ) ) )
280260, 271, 2793eqtr4rd 2486 . 2  |-  ( (
ph  /\  g  e.  V  /\  h  e.  V
)  ->  (  .*  `  ( g  .,  h
) )  =  ( h  .,  g ) )
2812, 3, 4, 6, 8, 16, 18, 19, 21, 23, 25, 33, 36, 74, 254, 71, 280isphld 18105 1  |-  ( ph  ->  Y  e.  PreHil )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2736   _Vcvv 2993    C_ wss 3349   class class class wbr 4313    e. cmpt 4371   Fun wfun 5433    Fn wfn 5434   -->wf 5435   ` cfv 5439  (class class class)co 6112    e. cmpt2 6114    oFcof 6339   supp csupp 6711    ^m cmap 7235   finSupp cfsupp 7641   Basecbs 14195   +g cplusg 14259   .rcmulr 14260   *rcstv 14261  Scalarcsca 14262   .scvsca 14263   .icip 14264   0gc0g 14399    gsumg cgsu 14400  CMndccmn 16298   Ringcrg 16667   CRingccrg 16668   DivRingcdr 16854  Fieldcfield 16855   LModclmod 16970   LVecclvec 17205   PreHilcphl 18075   freeLMod cfrlm 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-of 6341  df-om 6498  df-1st 6598  df-2nd 6599  df-supp 6712  df-tpos 6766  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-map 7237  df-ixp 7285  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fsupp 7642  df-sup 7712  df-oi 7745  df-card 8130  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-fz 11459  df-fzo 11570  df-seq 11828  df-hash 12125  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-sca 14275  df-vsca 14276  df-ip 14277  df-tset 14278  df-ple 14279  df-ds 14281  df-hom 14283  df-cco 14284  df-0g 14401  df-gsum 14402  df-prds 14407  df-pws 14409  df-mnd 15436  df-mhm 15485  df-submnd 15486  df-grp 15566  df-minusg 15567  df-sbg 15568  df-subg 15699  df-ghm 15766  df-cntz 15856  df-cmn 16300  df-abl 16301  df-mgp 16614  df-ur 16626  df-rng 16669  df-cring 16670  df-oppr 16737  df-rnghom 16828  df-drng 16856  df-field 16857  df-subrg 16885  df-staf 16952  df-srng 16953  df-lmod 16972  df-lss 17036  df-lmhm 17125  df-lvec 17206  df-sra 17275  df-rgmod 17276  df-phl 18077  df-dsmm 18179  df-frlm 18194
This theorem is referenced by:  rrxcph  20918
  Copyright terms: Public domain W3C validator