MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmlbs Structured version   Unicode version

Theorem frlmlbs 18958
Description: The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmlbs.f  |-  F  =  ( R freeLMod  I )
frlmlbs.u  |-  U  =  ( R unitVec  I )
frlmlbs.j  |-  J  =  (LBasis `  F )
Assertion
Ref Expression
frlmlbs  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ran  U  e.  J )

Proof of Theorem frlmlbs
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmlbs.u . . . 4  |-  U  =  ( R unitVec  I )
2 frlmlbs.f . . . 4  |-  F  =  ( R freeLMod  I )
3 eqid 2457 . . . 4  |-  ( Base `  F )  =  (
Base `  F )
41, 2, 3uvcff 18949 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  U : I --> ( Base `  F ) )
5 frn 5743 . . 3  |-  ( U : I --> ( Base `  F )  ->  ran  U 
C_  ( Base `  F
) )
64, 5syl 16 . 2  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ran  U 
C_  ( Base `  F
) )
7 eqid 2457 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
82, 7, 3frlmbasf 18921 . . . . . . 7  |-  ( ( I  e.  V  /\  a  e.  ( Base `  F ) )  -> 
a : I --> ( Base `  R ) )
98adantll 713 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  a  e.  (
Base `  F )
)  ->  a :
I --> ( Base `  R
) )
10 suppssdm 6930 . . . . . . 7  |-  ( a supp  ( 0g `  R
) )  C_  dom  a
11 fdm 5741 . . . . . . 7  |-  ( a : I --> ( Base `  R )  ->  dom  a  =  I )
1210, 11syl5sseq 3547 . . . . . 6  |-  ( a : I --> ( Base `  R )  ->  (
a supp  ( 0g `  R ) )  C_  I )
139, 12syl 16 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  a  e.  (
Base `  F )
)  ->  ( a supp  ( 0g `  R ) )  C_  I )
1413ralrimiva 2871 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  A. a  e.  ( Base `  F
) ( a supp  ( 0g `  R ) ) 
C_  I )
15 rabid2 3035 . . . 4  |-  ( (
Base `  F )  =  { a  e.  (
Base `  F )  |  ( a supp  ( 0g `  R ) ) 
C_  I }  <->  A. a  e.  ( Base `  F
) ( a supp  ( 0g `  R ) ) 
C_  I )
1614, 15sylibr 212 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ( Base `  F )  =  { a  e.  (
Base `  F )  |  ( a supp  ( 0g `  R ) ) 
C_  I } )
17 ssid 3518 . . . 4  |-  I  C_  I
18 eqid 2457 . . . . 5  |-  ( LSpan `  F )  =  (
LSpan `  F )
19 eqid 2457 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
20 eqid 2457 . . . . 5  |-  { a  e.  ( Base `  F
)  |  ( a supp  ( 0g `  R
) )  C_  I }  =  { a  e.  ( Base `  F
)  |  ( a supp  ( 0g `  R
) )  C_  I }
212, 1, 18, 3, 19, 20frlmsslsp 18956 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  I  C_  I )  ->  (
( LSpan `  F ) `  ( U " I
) )  =  {
a  e.  ( Base `  F )  |  ( a supp  ( 0g `  R ) )  C_  I } )
2217, 21mp3an3 1313 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  (
( LSpan `  F ) `  ( U " I
) )  =  {
a  e.  ( Base `  F )  |  ( a supp  ( 0g `  R ) )  C_  I } )
23 ffn 5737 . . . . 5  |-  ( U : I --> ( Base `  F )  ->  U  Fn  I )
24 fnima 5705 . . . . 5  |-  ( U  Fn  I  ->  ( U " I )  =  ran  U )
254, 23, 243syl 20 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ( U " I )  =  ran  U )
2625fveq2d 5876 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  (
( LSpan `  F ) `  ( U " I
) )  =  ( ( LSpan `  F ) `  ran  U ) )
2716, 22, 263eqtr2rd 2505 . 2  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  (
( LSpan `  F ) `  ran  U )  =  ( Base `  F
) )
28 eqid 2457 . . . . . 6  |-  ( .s
`  F )  =  ( .s `  F
)
29 eqid 2457 . . . . . 6  |-  { a  e.  ( Base `  F
)  |  ( a supp  ( 0g `  R
) )  C_  (
I  \  { c } ) }  =  { a  e.  (
Base `  F )  |  ( a supp  ( 0g `  R ) ) 
C_  ( I  \  { c } ) }
30 simpll 753 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  R  e.  Ring )
31 simplr 755 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  I  e.  V
)
32 difssd 3628 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( I  \  { c } ) 
C_  I )
33 ssnid 4061 . . . . . . 7  |-  c  e. 
{ c }
34 snssi 4176 . . . . . . . . 9  |-  ( c  e.  I  ->  { c }  C_  I )
3534ad2antrl 727 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  { c } 
C_  I )
36 dfss4 3739 . . . . . . . 8  |-  ( { c }  C_  I  <->  ( I  \  ( I 
\  { c } ) )  =  {
c } )
3735, 36sylib 196 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( I  \ 
( I  \  {
c } ) )  =  { c } )
3833, 37syl5eleqr 2552 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  c  e.  ( I  \  ( I 
\  { c } ) ) )
392frlmsca 18911 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  R  =  (Scalar `  F )
)
4039fveq2d 5876 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ( Base `  R )  =  ( Base `  (Scalar `  F ) ) )
4139fveq2d 5876 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  F ) ) )
4241sneqd 4044 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  { ( 0g `  R ) }  =  { ( 0g `  (Scalar `  F ) ) } )
4340, 42difeq12d 3619 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  (
( Base `  R )  \  { ( 0g `  R ) } )  =  ( ( Base `  (Scalar `  F )
)  \  { ( 0g `  (Scalar `  F
) ) } ) )
4443eleq2d 2527 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  (
b  e.  ( (
Base `  R )  \  { ( 0g `  R ) } )  <-> 
b  e.  ( (
Base `  (Scalar `  F
) )  \  {
( 0g `  (Scalar `  F ) ) } ) ) )
4544biimpar 485 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) )  -> 
b  e.  ( (
Base `  R )  \  { ( 0g `  R ) } ) )
4645adantrl 715 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  b  e.  ( ( Base `  R
)  \  { ( 0g `  R ) } ) )
472, 1, 3, 7, 28, 19, 29, 30, 31, 32, 38, 46frlmssuvc2 18953 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  -.  ( b
( .s `  F
) ( U `  c ) )  e. 
{ a  e.  (
Base `  F )  |  ( a supp  ( 0g `  R ) ) 
C_  ( I  \  { c } ) } )
4819, 7ringelnzr 18041 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  b  e.  ( ( Base `  R
)  \  { ( 0g `  R ) } ) )  ->  R  e. NzRing )
4930, 46, 48syl2anc 661 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  R  e. NzRing )
501, 2, 3uvcf1 18950 . . . . . . . . . 10  |-  ( ( R  e. NzRing  /\  I  e.  V )  ->  U : I -1-1-> ( Base `  F ) )
5149, 31, 50syl2anc 661 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  U : I
-1-1-> ( Base `  F
) )
52 df-f1 5599 . . . . . . . . . 10  |-  ( U : I -1-1-> ( Base `  F )  <->  ( U : I --> ( Base `  F )  /\  Fun  `' U ) )
5352simprbi 464 . . . . . . . . 9  |-  ( U : I -1-1-> ( Base `  F )  ->  Fun  `' U )
54 imadif 5669 . . . . . . . . 9  |-  ( Fun  `' U  ->  ( U
" ( I  \  { c } ) )  =  ( ( U " I ) 
\  ( U " { c } ) ) )
5551, 53, 543syl 20 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( U "
( I  \  {
c } ) )  =  ( ( U
" I )  \ 
( U " {
c } ) ) )
56 f1fn 5788 . . . . . . . . . 10  |-  ( U : I -1-1-> ( Base `  F )  ->  U  Fn  I )
5751, 56, 243syl 20 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( U "
I )  =  ran  U )
5851, 56syl 16 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  U  Fn  I
)
59 simprl 756 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  c  e.  I
)
60 fnsnfv 5933 . . . . . . . . . . 11  |-  ( ( U  Fn  I  /\  c  e.  I )  ->  { ( U `  c ) }  =  ( U " { c } ) )
6158, 59, 60syl2anc 661 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  { ( U `
 c ) }  =  ( U " { c } ) )
6261eqcomd 2465 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( U " { c } )  =  { ( U `
 c ) } )
6357, 62difeq12d 3619 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( ( U
" I )  \ 
( U " {
c } ) )  =  ( ran  U  \  { ( U `  c ) } ) )
6455, 63eqtr2d 2499 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( ran  U  \  { ( U `  c ) } )  =  ( U "
( I  \  {
c } ) ) )
6564fveq2d 5876 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( ( LSpan `  F ) `  ( ran  U  \  { ( U `  c ) } ) )  =  ( ( LSpan `  F
) `  ( U " ( I  \  {
c } ) ) ) )
662, 1, 18, 3, 19, 29frlmsslsp 18956 . . . . . . 7  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  (
I  \  { c } )  C_  I
)  ->  ( ( LSpan `  F ) `  ( U " ( I 
\  { c } ) ) )  =  { a  e.  (
Base `  F )  |  ( a supp  ( 0g `  R ) ) 
C_  ( I  \  { c } ) } )
6730, 31, 32, 66syl3anc 1228 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( ( LSpan `  F ) `  ( U " ( I  \  { c } ) ) )  =  {
a  e.  ( Base `  F )  |  ( a supp  ( 0g `  R ) )  C_  ( I  \  { c } ) } )
6865, 67eqtrd 2498 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( ( LSpan `  F ) `  ( ran  U  \  { ( U `  c ) } ) )  =  { a  e.  (
Base `  F )  |  ( a supp  ( 0g `  R ) ) 
C_  ( I  \  { c } ) } )
6947, 68neleqtrrd 2570 . . . 4  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  -.  ( b
( .s `  F
) ( U `  c ) )  e.  ( ( LSpan `  F
) `  ( ran  U 
\  { ( U `
 c ) } ) ) )
7069ralrimivva 2878 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  A. c  e.  I  A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) ( U `
 c ) )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { ( U `  c ) } ) ) )
71 oveq2 6304 . . . . . . . 8  |-  ( a  =  ( U `  c )  ->  (
b ( .s `  F ) a )  =  ( b ( .s `  F ) ( U `  c
) ) )
72 sneq 4042 . . . . . . . . . 10  |-  ( a  =  ( U `  c )  ->  { a }  =  { ( U `  c ) } )
7372difeq2d 3618 . . . . . . . . 9  |-  ( a  =  ( U `  c )  ->  ( ran  U  \  { a } )  =  ( ran  U  \  {
( U `  c
) } ) )
7473fveq2d 5876 . . . . . . . 8  |-  ( a  =  ( U `  c )  ->  (
( LSpan `  F ) `  ( ran  U  \  { a } ) )  =  ( (
LSpan `  F ) `  ( ran  U  \  {
( U `  c
) } ) ) )
7571, 74eleq12d 2539 . . . . . . 7  |-  ( a  =  ( U `  c )  ->  (
( b ( .s
`  F ) a )  e.  ( (
LSpan `  F ) `  ( ran  U  \  {
a } ) )  <-> 
( b ( .s
`  F ) ( U `  c ) )  e.  ( (
LSpan `  F ) `  ( ran  U  \  {
( U `  c
) } ) ) ) )
7675notbid 294 . . . . . 6  |-  ( a  =  ( U `  c )  ->  ( -.  ( b ( .s
`  F ) a )  e.  ( (
LSpan `  F ) `  ( ran  U  \  {
a } ) )  <->  -.  ( b ( .s
`  F ) ( U `  c ) )  e.  ( (
LSpan `  F ) `  ( ran  U  \  {
( U `  c
) } ) ) ) )
7776ralbidv 2896 . . . . 5  |-  ( a  =  ( U `  c )  ->  ( A. b  e.  (
( Base `  (Scalar `  F
) )  \  {
( 0g `  (Scalar `  F ) ) } )  -.  ( b ( .s `  F
) a )  e.  ( ( LSpan `  F
) `  ( ran  U 
\  { a } ) )  <->  A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) ( U `
 c ) )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { ( U `  c ) } ) ) ) )
7877ralrn 6035 . . . 4  |-  ( U  Fn  I  ->  ( A. a  e.  ran  U A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) a )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { a } ) )  <->  A. c  e.  I  A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) ( U `
 c ) )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { ( U `  c ) } ) ) ) )
794, 23, 783syl 20 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ( A. a  e.  ran  U A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) a )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { a } ) )  <->  A. c  e.  I  A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) ( U `
 c ) )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { ( U `  c ) } ) ) ) )
8070, 79mpbird 232 . 2  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  A. a  e.  ran  U A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) a )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { a } ) ) )
81 ovex 6324 . . . 4  |-  ( R freeLMod  I )  e.  _V
822, 81eqeltri 2541 . . 3  |-  F  e. 
_V
83 eqid 2457 . . . 4  |-  (Scalar `  F )  =  (Scalar `  F )
84 eqid 2457 . . . 4  |-  ( Base `  (Scalar `  F )
)  =  ( Base `  (Scalar `  F )
)
85 frlmlbs.j . . . 4  |-  J  =  (LBasis `  F )
86 eqid 2457 . . . 4  |-  ( 0g
`  (Scalar `  F )
)  =  ( 0g
`  (Scalar `  F )
)
873, 83, 28, 84, 85, 18, 86islbs 17849 . . 3  |-  ( F  e.  _V  ->  ( ran  U  e.  J  <->  ( ran  U 
C_  ( Base `  F
)  /\  ( ( LSpan `  F ) `  ran  U )  =  (
Base `  F )  /\  A. a  e.  ran  U A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) a )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { a } ) ) ) ) )
8882, 87ax-mp 5 . 2  |-  ( ran 
U  e.  J  <->  ( ran  U 
C_  ( Base `  F
)  /\  ( ( LSpan `  F ) `  ran  U )  =  (
Base `  F )  /\  A. a  e.  ran  U A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) a )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { a } ) ) ) )
896, 27, 80, 88syl3anbrc 1180 1  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ran  U  e.  J )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807   {crab 2811   _Vcvv 3109    \ cdif 3468    C_ wss 3471   {csn 4032   `'ccnv 5007   dom cdm 5008   ran crn 5009   "cima 5011   Fun wfun 5588    Fn wfn 5589   -->wf 5590   -1-1->wf1 5591   ` cfv 5594  (class class class)co 6296   supp csupp 6917   Basecbs 14644  Scalarcsca 14715   .scvsca 14716   0gc0g 14857   Ringcrg 17325   LSpanclspn 17744  LBasisclbs 17847  NzRingcnzr 18032   freeLMod cfrlm 18904   unitVec cuvc 18940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-sup 7919  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-fz 11698  df-fzo 11822  df-seq 12111  df-hash 12409  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ple 14732  df-ds 14734  df-hom 14736  df-cco 14737  df-0g 14859  df-gsum 14860  df-prds 14865  df-pws 14867  df-mre 15003  df-mrc 15004  df-acs 15006  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-mhm 16093  df-submnd 16094  df-grp 16184  df-minusg 16185  df-sbg 16186  df-mulg 16187  df-subg 16325  df-ghm 16392  df-cntz 16482  df-cmn 16927  df-abl 16928  df-mgp 17269  df-ur 17281  df-ring 17327  df-subrg 17554  df-lmod 17641  df-lss 17706  df-lsp 17745  df-lmhm 17795  df-lbs 17848  df-sra 17945  df-rgmod 17946  df-nzr 18033  df-dsmm 18890  df-frlm 18905  df-uvc 18941
This theorem is referenced by:  frlmup3  18961  frlmup4  18962  lmisfree  19004  frlmisfrlm  19010  aacllem  33360
  Copyright terms: Public domain W3C validator