MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmlbs Structured version   Visualization version   Unicode version

Theorem frlmlbs 19355
Description: The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmlbs.f  |-  F  =  ( R freeLMod  I )
frlmlbs.u  |-  U  =  ( R unitVec  I )
frlmlbs.j  |-  J  =  (LBasis `  F )
Assertion
Ref Expression
frlmlbs  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ran  U  e.  J )

Proof of Theorem frlmlbs
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmlbs.u . . . 4  |-  U  =  ( R unitVec  I )
2 frlmlbs.f . . . 4  |-  F  =  ( R freeLMod  I )
3 eqid 2451 . . . 4  |-  ( Base `  F )  =  (
Base `  F )
41, 2, 3uvcff 19349 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  U : I --> ( Base `  F ) )
5 frn 5735 . . 3  |-  ( U : I --> ( Base `  F )  ->  ran  U 
C_  ( Base `  F
) )
64, 5syl 17 . 2  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ran  U 
C_  ( Base `  F
) )
7 eqid 2451 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
82, 7, 3frlmbasf 19323 . . . . . . 7  |-  ( ( I  e.  V  /\  a  e.  ( Base `  F ) )  -> 
a : I --> ( Base `  R ) )
98adantll 720 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  a  e.  (
Base `  F )
)  ->  a :
I --> ( Base `  R
) )
10 suppssdm 6927 . . . . . . 7  |-  ( a supp  ( 0g `  R
) )  C_  dom  a
11 fdm 5733 . . . . . . 7  |-  ( a : I --> ( Base `  R )  ->  dom  a  =  I )
1210, 11syl5sseq 3480 . . . . . 6  |-  ( a : I --> ( Base `  R )  ->  (
a supp  ( 0g `  R ) )  C_  I )
139, 12syl 17 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  a  e.  (
Base `  F )
)  ->  ( a supp  ( 0g `  R ) )  C_  I )
1413ralrimiva 2802 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  A. a  e.  ( Base `  F
) ( a supp  ( 0g `  R ) ) 
C_  I )
15 rabid2 2968 . . . 4  |-  ( (
Base `  F )  =  { a  e.  (
Base `  F )  |  ( a supp  ( 0g `  R ) ) 
C_  I }  <->  A. a  e.  ( Base `  F
) ( a supp  ( 0g `  R ) ) 
C_  I )
1614, 15sylibr 216 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ( Base `  F )  =  { a  e.  (
Base `  F )  |  ( a supp  ( 0g `  R ) ) 
C_  I } )
17 ssid 3451 . . . 4  |-  I  C_  I
18 eqid 2451 . . . . 5  |-  ( LSpan `  F )  =  (
LSpan `  F )
19 eqid 2451 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
20 eqid 2451 . . . . 5  |-  { a  e.  ( Base `  F
)  |  ( a supp  ( 0g `  R
) )  C_  I }  =  { a  e.  ( Base `  F
)  |  ( a supp  ( 0g `  R
) )  C_  I }
212, 1, 18, 3, 19, 20frlmsslsp 19354 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  I  C_  I )  ->  (
( LSpan `  F ) `  ( U " I
) )  =  {
a  e.  ( Base `  F )  |  ( a supp  ( 0g `  R ) )  C_  I } )
2217, 21mp3an3 1353 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  (
( LSpan `  F ) `  ( U " I
) )  =  {
a  e.  ( Base `  F )  |  ( a supp  ( 0g `  R ) )  C_  I } )
23 ffn 5728 . . . . 5  |-  ( U : I --> ( Base `  F )  ->  U  Fn  I )
24 fnima 5694 . . . . 5  |-  ( U  Fn  I  ->  ( U " I )  =  ran  U )
254, 23, 243syl 18 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ( U " I )  =  ran  U )
2625fveq2d 5869 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  (
( LSpan `  F ) `  ( U " I
) )  =  ( ( LSpan `  F ) `  ran  U ) )
2716, 22, 263eqtr2rd 2492 . 2  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  (
( LSpan `  F ) `  ran  U )  =  ( Base `  F
) )
28 eqid 2451 . . . . . 6  |-  ( .s
`  F )  =  ( .s `  F
)
29 eqid 2451 . . . . . 6  |-  { a  e.  ( Base `  F
)  |  ( a supp  ( 0g `  R
) )  C_  (
I  \  { c } ) }  =  { a  e.  (
Base `  F )  |  ( a supp  ( 0g `  R ) ) 
C_  ( I  \  { c } ) }
30 simpll 760 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  R  e.  Ring )
31 simplr 762 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  I  e.  V
)
32 difssd 3561 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( I  \  { c } ) 
C_  I )
33 ssnid 3997 . . . . . . 7  |-  c  e. 
{ c }
34 snssi 4116 . . . . . . . . 9  |-  ( c  e.  I  ->  { c }  C_  I )
3534ad2antrl 734 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  { c } 
C_  I )
36 dfss4 3677 . . . . . . . 8  |-  ( { c }  C_  I  <->  ( I  \  ( I 
\  { c } ) )  =  {
c } )
3735, 36sylib 200 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( I  \ 
( I  \  {
c } ) )  =  { c } )
3833, 37syl5eleqr 2536 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  c  e.  ( I  \  ( I 
\  { c } ) ) )
392frlmsca 19316 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  R  =  (Scalar `  F )
)
4039fveq2d 5869 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ( Base `  R )  =  ( Base `  (Scalar `  F ) ) )
4139fveq2d 5869 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  F ) ) )
4241sneqd 3980 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  { ( 0g `  R ) }  =  { ( 0g `  (Scalar `  F ) ) } )
4340, 42difeq12d 3552 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  (
( Base `  R )  \  { ( 0g `  R ) } )  =  ( ( Base `  (Scalar `  F )
)  \  { ( 0g `  (Scalar `  F
) ) } ) )
4443eleq2d 2514 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  (
b  e.  ( (
Base `  R )  \  { ( 0g `  R ) } )  <-> 
b  e.  ( (
Base `  (Scalar `  F
) )  \  {
( 0g `  (Scalar `  F ) ) } ) ) )
4544biimpar 488 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) )  -> 
b  e.  ( (
Base `  R )  \  { ( 0g `  R ) } ) )
4645adantrl 722 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  b  e.  ( ( Base `  R
)  \  { ( 0g `  R ) } ) )
472, 1, 3, 7, 28, 19, 29, 30, 31, 32, 38, 46frlmssuvc2 19353 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  -.  ( b
( .s `  F
) ( U `  c ) )  e. 
{ a  e.  (
Base `  F )  |  ( a supp  ( 0g `  R ) ) 
C_  ( I  \  { c } ) } )
4819, 7ringelnzr 18490 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  b  e.  ( ( Base `  R
)  \  { ( 0g `  R ) } ) )  ->  R  e. NzRing )
4930, 46, 48syl2anc 667 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  R  e. NzRing )
501, 2, 3uvcf1 19350 . . . . . . . . . 10  |-  ( ( R  e. NzRing  /\  I  e.  V )  ->  U : I -1-1-> ( Base `  F ) )
5149, 31, 50syl2anc 667 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  U : I
-1-1-> ( Base `  F
) )
52 df-f1 5587 . . . . . . . . . 10  |-  ( U : I -1-1-> ( Base `  F )  <->  ( U : I --> ( Base `  F )  /\  Fun  `' U ) )
5352simprbi 466 . . . . . . . . 9  |-  ( U : I -1-1-> ( Base `  F )  ->  Fun  `' U )
54 imadif 5658 . . . . . . . . 9  |-  ( Fun  `' U  ->  ( U
" ( I  \  { c } ) )  =  ( ( U " I ) 
\  ( U " { c } ) ) )
5551, 53, 543syl 18 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( U "
( I  \  {
c } ) )  =  ( ( U
" I )  \ 
( U " {
c } ) ) )
56 f1fn 5780 . . . . . . . . . 10  |-  ( U : I -1-1-> ( Base `  F )  ->  U  Fn  I )
5751, 56, 243syl 18 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( U "
I )  =  ran  U )
5851, 56syl 17 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  U  Fn  I
)
59 simprl 764 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  c  e.  I
)
60 fnsnfv 5925 . . . . . . . . . . 11  |-  ( ( U  Fn  I  /\  c  e.  I )  ->  { ( U `  c ) }  =  ( U " { c } ) )
6158, 59, 60syl2anc 667 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  { ( U `
 c ) }  =  ( U " { c } ) )
6261eqcomd 2457 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( U " { c } )  =  { ( U `
 c ) } )
6357, 62difeq12d 3552 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( ( U
" I )  \ 
( U " {
c } ) )  =  ( ran  U  \  { ( U `  c ) } ) )
6455, 63eqtr2d 2486 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( ran  U  \  { ( U `  c ) } )  =  ( U "
( I  \  {
c } ) ) )
6564fveq2d 5869 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( ( LSpan `  F ) `  ( ran  U  \  { ( U `  c ) } ) )  =  ( ( LSpan `  F
) `  ( U " ( I  \  {
c } ) ) ) )
662, 1, 18, 3, 19, 29frlmsslsp 19354 . . . . . . 7  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  (
I  \  { c } )  C_  I
)  ->  ( ( LSpan `  F ) `  ( U " ( I 
\  { c } ) ) )  =  { a  e.  (
Base `  F )  |  ( a supp  ( 0g `  R ) ) 
C_  ( I  \  { c } ) } )
6730, 31, 32, 66syl3anc 1268 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( ( LSpan `  F ) `  ( U " ( I  \  { c } ) ) )  =  {
a  e.  ( Base `  F )  |  ( a supp  ( 0g `  R ) )  C_  ( I  \  { c } ) } )
6865, 67eqtrd 2485 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  ( ( LSpan `  F ) `  ( ran  U  \  { ( U `  c ) } ) )  =  { a  e.  (
Base `  F )  |  ( a supp  ( 0g `  R ) ) 
C_  ( I  \  { c } ) } )
6947, 68neleqtrrd 2551 . . . 4  |-  ( ( ( R  e.  Ring  /\  I  e.  V )  /\  ( c  e.  I  /\  b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } ) ) )  ->  -.  ( b
( .s `  F
) ( U `  c ) )  e.  ( ( LSpan `  F
) `  ( ran  U 
\  { ( U `
 c ) } ) ) )
7069ralrimivva 2809 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  A. c  e.  I  A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) ( U `
 c ) )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { ( U `  c ) } ) ) )
71 oveq2 6298 . . . . . . . 8  |-  ( a  =  ( U `  c )  ->  (
b ( .s `  F ) a )  =  ( b ( .s `  F ) ( U `  c
) ) )
72 sneq 3978 . . . . . . . . . 10  |-  ( a  =  ( U `  c )  ->  { a }  =  { ( U `  c ) } )
7372difeq2d 3551 . . . . . . . . 9  |-  ( a  =  ( U `  c )  ->  ( ran  U  \  { a } )  =  ( ran  U  \  {
( U `  c
) } ) )
7473fveq2d 5869 . . . . . . . 8  |-  ( a  =  ( U `  c )  ->  (
( LSpan `  F ) `  ( ran  U  \  { a } ) )  =  ( (
LSpan `  F ) `  ( ran  U  \  {
( U `  c
) } ) ) )
7571, 74eleq12d 2523 . . . . . . 7  |-  ( a  =  ( U `  c )  ->  (
( b ( .s
`  F ) a )  e.  ( (
LSpan `  F ) `  ( ran  U  \  {
a } ) )  <-> 
( b ( .s
`  F ) ( U `  c ) )  e.  ( (
LSpan `  F ) `  ( ran  U  \  {
( U `  c
) } ) ) ) )
7675notbid 296 . . . . . 6  |-  ( a  =  ( U `  c )  ->  ( -.  ( b ( .s
`  F ) a )  e.  ( (
LSpan `  F ) `  ( ran  U  \  {
a } ) )  <->  -.  ( b ( .s
`  F ) ( U `  c ) )  e.  ( (
LSpan `  F ) `  ( ran  U  \  {
( U `  c
) } ) ) ) )
7776ralbidv 2827 . . . . 5  |-  ( a  =  ( U `  c )  ->  ( A. b  e.  (
( Base `  (Scalar `  F
) )  \  {
( 0g `  (Scalar `  F ) ) } )  -.  ( b ( .s `  F
) a )  e.  ( ( LSpan `  F
) `  ( ran  U 
\  { a } ) )  <->  A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) ( U `
 c ) )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { ( U `  c ) } ) ) ) )
7877ralrn 6025 . . . 4  |-  ( U  Fn  I  ->  ( A. a  e.  ran  U A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) a )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { a } ) )  <->  A. c  e.  I  A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) ( U `
 c ) )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { ( U `  c ) } ) ) ) )
794, 23, 783syl 18 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ( A. a  e.  ran  U A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) a )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { a } ) )  <->  A. c  e.  I  A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) ( U `
 c ) )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { ( U `  c ) } ) ) ) )
8070, 79mpbird 236 . 2  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  A. a  e.  ran  U A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) a )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { a } ) ) )
81 ovex 6318 . . . 4  |-  ( R freeLMod  I )  e.  _V
822, 81eqeltri 2525 . . 3  |-  F  e. 
_V
83 eqid 2451 . . . 4  |-  (Scalar `  F )  =  (Scalar `  F )
84 eqid 2451 . . . 4  |-  ( Base `  (Scalar `  F )
)  =  ( Base `  (Scalar `  F )
)
85 frlmlbs.j . . . 4  |-  J  =  (LBasis `  F )
86 eqid 2451 . . . 4  |-  ( 0g
`  (Scalar `  F )
)  =  ( 0g
`  (Scalar `  F )
)
873, 83, 28, 84, 85, 18, 86islbs 18299 . . 3  |-  ( F  e.  _V  ->  ( ran  U  e.  J  <->  ( ran  U 
C_  ( Base `  F
)  /\  ( ( LSpan `  F ) `  ran  U )  =  (
Base `  F )  /\  A. a  e.  ran  U A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) a )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { a } ) ) ) ) )
8882, 87ax-mp 5 . 2  |-  ( ran 
U  e.  J  <->  ( ran  U 
C_  ( Base `  F
)  /\  ( ( LSpan `  F ) `  ran  U )  =  (
Base `  F )  /\  A. a  e.  ran  U A. b  e.  ( ( Base `  (Scalar `  F ) )  \  { ( 0g `  (Scalar `  F ) ) } )  -.  (
b ( .s `  F ) a )  e.  ( ( LSpan `  F ) `  ( ran  U  \  { a } ) ) ) )
896, 27, 80, 88syl3anbrc 1192 1  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  ran  U  e.  J )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   A.wral 2737   {crab 2741   _Vcvv 3045    \ cdif 3401    C_ wss 3404   {csn 3968   `'ccnv 4833   dom cdm 4834   ran crn 4835   "cima 4837   Fun wfun 5576    Fn wfn 5577   -->wf 5578   -1-1->wf1 5579   ` cfv 5582  (class class class)co 6290   supp csupp 6914   Basecbs 15121  Scalarcsca 15193   .scvsca 15194   0gc0g 15338   Ringcrg 17780   LSpanclspn 18194  LBasisclbs 18297  NzRingcnzr 18481   freeLMod cfrlm 19309   unitVec cuvc 19340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-map 7474  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-sup 7956  df-oi 8025  df-card 8373  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-fz 11785  df-fzo 11916  df-seq 12214  df-hash 12516  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-hom 15214  df-cco 15215  df-0g 15340  df-gsum 15341  df-prds 15346  df-pws 15348  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-mhm 16582  df-submnd 16583  df-grp 16673  df-minusg 16674  df-sbg 16675  df-mulg 16676  df-subg 16814  df-ghm 16881  df-cntz 16971  df-cmn 17432  df-abl 17433  df-mgp 17724  df-ur 17736  df-ring 17782  df-subrg 18006  df-lmod 18093  df-lss 18156  df-lsp 18195  df-lmhm 18245  df-lbs 18298  df-sra 18395  df-rgmod 18396  df-nzr 18482  df-dsmm 19295  df-frlm 19310  df-uvc 19341
This theorem is referenced by:  frlmup3  19358  frlmup4  19359  lmisfree  19400  frlmisfrlm  19406  aacllem  40593
  Copyright terms: Public domain W3C validator