MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmgsumOLD Structured version   Unicode version

Theorem frlmgsumOLD 18972
Description: Finite commutative sums in a free module are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 5-Jul-2015.) Obsolete version of frlmgsum 18973 as of 23-Jun-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frlmgsum.y  |-  Y  =  ( R freeLMod  I )
frlmgsum.b  |-  B  =  ( Base `  Y
)
frlmgsum.z  |-  .0.  =  ( 0g `  Y )
frlmgsum.i  |-  ( ph  ->  I  e.  V )
frlmgsum.j  |-  ( ph  ->  J  e.  W )
frlmgsum.r  |-  ( ph  ->  R  e.  Ring )
frlmgsum.f  |-  ( (
ph  /\  y  e.  J )  ->  (
x  e.  I  |->  U )  e.  B )
frlmgsumOLD.w  |-  ( ph  ->  ( `' ( y  e.  J  |->  ( x  e.  I  |->  U ) ) " ( _V 
\  {  .0.  }
) )  e.  Fin )
Assertion
Ref Expression
frlmgsumOLD  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
Distinct variable groups:    x, y, B    x, I, y    ph, x, y    x,  .0. , y    x, J, y    x, R, y   
x, Y, y
Allowed substitution hints:    U( x, y)    V( x, y)    W( x, y)

Proof of Theorem frlmgsumOLD
StepHypRef Expression
1 frlmgsum.r . . . 4  |-  ( ph  ->  R  e.  Ring )
2 frlmgsum.i . . . 4  |-  ( ph  ->  I  e.  V )
3 frlmgsum.y . . . . 5  |-  Y  =  ( R freeLMod  I )
4 frlmgsum.b . . . . 5  |-  B  =  ( Base `  Y
)
53, 4frlmpws 18954 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  Y  =  ( ( (ringLMod `  R )  ^s  I )s  B ) )
61, 2, 5syl2anc 659 . . 3  |-  ( ph  ->  Y  =  ( ( (ringLMod `  R )  ^s  I )s  B ) )
76oveq1d 6285 . 2  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( ( ( (ringLMod `  R )  ^s  I )s  B )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) )
8 eqid 2454 . . 3  |-  ( Base `  ( (ringLMod `  R
)  ^s  I ) )  =  ( Base `  (
(ringLMod `  R )  ^s  I
) )
9 eqid 2454 . . 3  |-  ( +g  `  ( (ringLMod `  R
)  ^s  I ) )  =  ( +g  `  (
(ringLMod `  R )  ^s  I
) )
10 eqid 2454 . . 3  |-  ( ( (ringLMod `  R )  ^s  I )s  B )  =  ( ( (ringLMod `  R
)  ^s  I )s  B )
11 ovex 6298 . . . 4  |-  ( (ringLMod `  R )  ^s  I )  e.  _V
1211a1i 11 . . 3  |-  ( ph  ->  ( (ringLMod `  R
)  ^s  I )  e.  _V )
13 frlmgsum.j . . 3  |-  ( ph  ->  J  e.  W )
14 eqid 2454 . . . . . 6  |-  ( LSubSp `  ( (ringLMod `  R
)  ^s  I ) )  =  ( LSubSp `  ( (ringLMod `  R )  ^s  I ) )
153, 4, 14frlmlss 18955 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  B  e.  ( LSubSp `  ( (ringLMod `  R )  ^s  I ) ) )
161, 2, 15syl2anc 659 . . . 4  |-  ( ph  ->  B  e.  ( LSubSp `  ( (ringLMod `  R
)  ^s  I ) ) )
178, 14lssss 17778 . . . 4  |-  ( B  e.  ( LSubSp `  (
(ringLMod `  R )  ^s  I
) )  ->  B  C_  ( Base `  (
(ringLMod `  R )  ^s  I
) ) )
1816, 17syl 16 . . 3  |-  ( ph  ->  B  C_  ( Base `  ( (ringLMod `  R
)  ^s  I ) ) )
19 frlmgsum.f . . . 4  |-  ( (
ph  /\  y  e.  J )  ->  (
x  e.  I  |->  U )  e.  B )
20 eqid 2454 . . . 4  |-  ( y  e.  J  |->  ( x  e.  I  |->  U ) )  =  ( y  e.  J  |->  ( x  e.  I  |->  U ) )
2119, 20fmptd 6031 . . 3  |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) : J --> B )
22 rlmlmod 18046 . . . . . 6  |-  ( R  e.  Ring  ->  (ringLMod `  R
)  e.  LMod )
231, 22syl 16 . . . . 5  |-  ( ph  ->  (ringLMod `  R )  e.  LMod )
24 eqid 2454 . . . . . 6  |-  ( (ringLMod `  R )  ^s  I )  =  ( (ringLMod `  R
)  ^s  I )
2524pwslmod 17811 . . . . 5  |-  ( ( (ringLMod `  R )  e.  LMod  /\  I  e.  V )  ->  (
(ringLMod `  R )  ^s  I
)  e.  LMod )
2623, 2, 25syl2anc 659 . . . 4  |-  ( ph  ->  ( (ringLMod `  R
)  ^s  I )  e.  LMod )
27 eqid 2454 . . . . 5  |-  ( 0g
`  ( (ringLMod `  R
)  ^s  I ) )  =  ( 0g `  (
(ringLMod `  R )  ^s  I
) )
2827, 14lss0cl 17788 . . . 4  |-  ( ( ( (ringLMod `  R
)  ^s  I )  e.  LMod  /\  B  e.  ( LSubSp `  ( (ringLMod `  R
)  ^s  I ) ) )  ->  ( 0g `  ( (ringLMod `  R )  ^s  I ) )  e.  B )
2926, 16, 28syl2anc 659 . . 3  |-  ( ph  ->  ( 0g `  (
(ringLMod `  R )  ^s  I
) )  e.  B
)
30 lmodcmn 17753 . . . . . . 7  |-  ( (ringLMod `  R )  e.  LMod  -> 
(ringLMod `  R )  e. CMnd
)
3123, 30syl 16 . . . . . 6  |-  ( ph  ->  (ringLMod `  R )  e. CMnd )
32 cmnmnd 17012 . . . . . 6  |-  ( (ringLMod `  R )  e. CMnd  ->  (ringLMod `  R )  e.  Mnd )
3331, 32syl 16 . . . . 5  |-  ( ph  ->  (ringLMod `  R )  e.  Mnd )
3424pwsmnd 16154 . . . . 5  |-  ( ( (ringLMod `  R )  e.  Mnd  /\  I  e.  V )  ->  (
(ringLMod `  R )  ^s  I
)  e.  Mnd )
3533, 2, 34syl2anc 659 . . . 4  |-  ( ph  ->  ( (ringLMod `  R
)  ^s  I )  e.  Mnd )
368, 9, 27mndlrid 16139 . . . 4  |-  ( ( ( (ringLMod `  R
)  ^s  I )  e.  Mnd  /\  x  e.  ( Base `  ( (ringLMod `  R
)  ^s  I ) ) )  ->  ( ( ( 0g `  ( (ringLMod `  R )  ^s  I ) ) ( +g  `  (
(ringLMod `  R )  ^s  I
) ) x )  =  x  /\  (
x ( +g  `  (
(ringLMod `  R )  ^s  I
) ) ( 0g
`  ( (ringLMod `  R
)  ^s  I ) ) )  =  x ) )
3735, 36sylan 469 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  ( (ringLMod `  R )  ^s  I ) ) )  ->  (
( ( 0g `  ( (ringLMod `  R )  ^s  I ) ) ( +g  `  ( (ringLMod `  R )  ^s  I ) ) x )  =  x  /\  ( x ( +g  `  (
(ringLMod `  R )  ^s  I
) ) ( 0g
`  ( (ringLMod `  R
)  ^s  I ) ) )  =  x ) )
388, 9, 10, 12, 13, 18, 21, 29, 37gsumress 16102 . 2  |-  ( ph  ->  ( ( (ringLMod `  R
)  ^s  I )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( ( ( (ringLMod `  R )  ^s  I )s  B )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) )
39 rlmbas 18036 . . . 4  |-  ( Base `  R )  =  (
Base `  (ringLMod `  R
) )
402adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  J )  ->  I  e.  V )
41 eqid 2454 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
423, 41, 4frlmbasf 18965 . . . . . . . . 9  |-  ( ( I  e.  V  /\  ( x  e.  I  |->  U )  e.  B
)  ->  ( x  e.  I  |->  U ) : I --> ( Base `  R ) )
4340, 19, 42syl2anc 659 . . . . . . . 8  |-  ( (
ph  /\  y  e.  J )  ->  (
x  e.  I  |->  U ) : I --> ( Base `  R ) )
44 eqid 2454 . . . . . . . . 9  |-  ( x  e.  I  |->  U )  =  ( x  e.  I  |->  U )
4544fmpt 6028 . . . . . . . 8  |-  ( A. x  e.  I  U  e.  ( Base `  R
)  <->  ( x  e.  I  |->  U ) : I --> ( Base `  R
) )
4643, 45sylibr 212 . . . . . . 7  |-  ( (
ph  /\  y  e.  J )  ->  A. x  e.  I  U  e.  ( Base `  R )
)
4746r19.21bi 2823 . . . . . 6  |-  ( ( ( ph  /\  y  e.  J )  /\  x  e.  I )  ->  U  e.  ( Base `  R
) )
4847an32s 802 . . . . 5  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  U  e.  ( Base `  R
) )
4948anasss 645 . . . 4  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  J ) )  ->  U  e.  ( Base `  R ) )
50 frlmgsum.z . . . . . . . . 9  |-  .0.  =  ( 0g `  Y )
516fveq2d 5852 . . . . . . . . . 10  |-  ( ph  ->  ( 0g `  Y
)  =  ( 0g
`  ( ( (ringLMod `  R )  ^s  I )s  B ) ) )
5214lsssubg 17798 . . . . . . . . . . . 12  |-  ( ( ( (ringLMod `  R
)  ^s  I )  e.  LMod  /\  B  e.  ( LSubSp `  ( (ringLMod `  R
)  ^s  I ) ) )  ->  B  e.  (SubGrp `  ( (ringLMod `  R
)  ^s  I ) ) )
5326, 16, 52syl2anc 659 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  (SubGrp `  ( (ringLMod `  R )  ^s  I ) ) )
5410, 27subg0 16406 . . . . . . . . . . 11  |-  ( B  e.  (SubGrp `  (
(ringLMod `  R )  ^s  I
) )  ->  ( 0g `  ( (ringLMod `  R
)  ^s  I ) )  =  ( 0g `  (
( (ringLMod `  R )  ^s  I )s  B ) ) )
5553, 54syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( 0g `  (
(ringLMod `  R )  ^s  I
) )  =  ( 0g `  ( ( (ringLMod `  R )  ^s  I )s  B ) ) )
5651, 55eqtr4d 2498 . . . . . . . . 9  |-  ( ph  ->  ( 0g `  Y
)  =  ( 0g
`  ( (ringLMod `  R
)  ^s  I ) ) )
5750, 56syl5eq 2507 . . . . . . . 8  |-  ( ph  ->  .0.  =  ( 0g
`  ( (ringLMod `  R
)  ^s  I ) ) )
5857sneqd 4028 . . . . . . 7  |-  ( ph  ->  {  .0.  }  =  { ( 0g `  ( (ringLMod `  R )  ^s  I ) ) } )
5958difeq2d 3608 . . . . . 6  |-  ( ph  ->  ( _V  \  {  .0.  } )  =  ( _V  \  { ( 0g `  ( (ringLMod `  R )  ^s  I ) ) } ) )
6059imaeq2d 5325 . . . . 5  |-  ( ph  ->  ( `' ( y  e.  J  |->  ( x  e.  I  |->  U ) ) " ( _V 
\  {  .0.  }
) )  =  ( `' ( y  e.  J  |->  ( x  e.  I  |->  U ) )
" ( _V  \  { ( 0g `  ( (ringLMod `  R )  ^s  I ) ) } ) ) )
61 frlmgsumOLD.w . . . . 5  |-  ( ph  ->  ( `' ( y  e.  J  |->  ( x  e.  I  |->  U ) ) " ( _V 
\  {  .0.  }
) )  e.  Fin )
6260, 61eqeltrrd 2543 . . . 4  |-  ( ph  ->  ( `' ( y  e.  J  |->  ( x  e.  I  |->  U ) ) " ( _V 
\  { ( 0g
`  ( (ringLMod `  R
)  ^s  I ) ) } ) )  e.  Fin )
6324, 39, 27, 2, 13, 31, 49, 62pwsgsumOLD 17205 . . 3  |-  ( ph  ->  ( ( (ringLMod `  R
)  ^s  I )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( (ringLMod `  R
)  gsumg  ( y  e.  J  |->  U ) ) ) )
64 mptexg 6117 . . . . . 6  |-  ( J  e.  W  ->  (
y  e.  J  |->  U )  e.  _V )
6513, 64syl 16 . . . . 5  |-  ( ph  ->  ( y  e.  J  |->  U )  e.  _V )
66 fvex 5858 . . . . . 6  |-  (ringLMod `  R
)  e.  _V
6766a1i 11 . . . . 5  |-  ( ph  ->  (ringLMod `  R )  e.  _V )
6839a1i 11 . . . . 5  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (ringLMod `  R )
) )
69 rlmplusg 18037 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  (ringLMod `  R
) )
7069a1i 11 . . . . 5  |-  ( ph  ->  ( +g  `  R
)  =  ( +g  `  (ringLMod `  R )
) )
7165, 1, 67, 68, 70gsumpropd 16098 . . . 4  |-  ( ph  ->  ( R  gsumg  ( y  e.  J  |->  U ) )  =  ( (ringLMod `  R
)  gsumg  ( y  e.  J  |->  U ) ) )
7271mpteq2dv 4526 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) )  =  ( x  e.  I  |->  ( (ringLMod `  R
)  gsumg  ( y  e.  J  |->  U ) ) ) )
7363, 72eqtr4d 2498 . 2  |-  ( ph  ->  ( ( (ringLMod `  R
)  ^s  I )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
747, 38, 733eqtr2d 2501 1  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   _Vcvv 3106    \ cdif 3458    C_ wss 3461   {csn 4016    |-> cmpt 4497   `'ccnv 4987   "cima 4991   -->wf 5566   ` cfv 5570  (class class class)co 6270   Fincfn 7509   Basecbs 14716   ↾s cress 14717   +g cplusg 14784   0gc0g 14929    gsumg cgsu 14930    ^s cpws 14936   Mndcmnd 16118  SubGrpcsubg 16394  CMndccmn 16997   Ringcrg 17393   LModclmod 17707   LSubSpclss 17773  ringLModcrglmod 18010   freeLMod cfrlm 18950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12090  df-hash 12388  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-hom 14808  df-cco 14809  df-0g 14931  df-gsum 14932  df-prds 14937  df-pws 14939  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-mhm 16165  df-grp 16256  df-minusg 16257  df-sbg 16258  df-subg 16397  df-cntz 16554  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395  df-subrg 17622  df-lmod 17709  df-lss 17774  df-sra 18013  df-rgmod 18014  df-dsmm 18936  df-frlm 18951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator