MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmgsum Structured version   Unicode version

Theorem frlmgsum 18316
Description: Finite commutative sums in a free module are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 5-Jul-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmgsum.y  |-  Y  =  ( R freeLMod  I )
frlmgsum.b  |-  B  =  ( Base `  Y
)
frlmgsum.z  |-  .0.  =  ( 0g `  Y )
frlmgsum.i  |-  ( ph  ->  I  e.  V )
frlmgsum.j  |-  ( ph  ->  J  e.  W )
frlmgsum.r  |-  ( ph  ->  R  e.  Ring )
frlmgsum.f  |-  ( (
ph  /\  y  e.  J )  ->  (
x  e.  I  |->  U )  e.  B )
frlmgsum.w  |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) finSupp  .0.  )
Assertion
Ref Expression
frlmgsum  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
Distinct variable groups:    x, y, B    x, I, y    ph, x, y    x,  .0. , y    x, J, y    x, R, y   
x, Y, y
Allowed substitution hints:    U( x, y)    V( x, y)    W( x, y)

Proof of Theorem frlmgsum
StepHypRef Expression
1 frlmgsum.r . . . 4  |-  ( ph  ->  R  e.  Ring )
2 frlmgsum.i . . . 4  |-  ( ph  ->  I  e.  V )
3 frlmgsum.y . . . . 5  |-  Y  =  ( R freeLMod  I )
4 frlmgsum.b . . . . 5  |-  B  =  ( Base `  Y
)
53, 4frlmpws 18295 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  Y  =  ( ( (ringLMod `  R )  ^s  I )s  B ) )
61, 2, 5syl2anc 661 . . 3  |-  ( ph  ->  Y  =  ( ( (ringLMod `  R )  ^s  I )s  B ) )
76oveq1d 6210 . 2  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( ( ( (ringLMod `  R )  ^s  I )s  B )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) )
8 eqid 2452 . . 3  |-  ( Base `  ( (ringLMod `  R
)  ^s  I ) )  =  ( Base `  (
(ringLMod `  R )  ^s  I
) )
9 eqid 2452 . . 3  |-  ( +g  `  ( (ringLMod `  R
)  ^s  I ) )  =  ( +g  `  (
(ringLMod `  R )  ^s  I
) )
10 eqid 2452 . . 3  |-  ( ( (ringLMod `  R )  ^s  I )s  B )  =  ( ( (ringLMod `  R
)  ^s  I )s  B )
11 ovex 6220 . . . 4  |-  ( (ringLMod `  R )  ^s  I )  e.  _V
1211a1i 11 . . 3  |-  ( ph  ->  ( (ringLMod `  R
)  ^s  I )  e.  _V )
13 frlmgsum.j . . 3  |-  ( ph  ->  J  e.  W )
14 eqid 2452 . . . . . 6  |-  ( LSubSp `  ( (ringLMod `  R
)  ^s  I ) )  =  ( LSubSp `  ( (ringLMod `  R )  ^s  I ) )
153, 4, 14frlmlss 18296 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  B  e.  ( LSubSp `  ( (ringLMod `  R )  ^s  I ) ) )
161, 2, 15syl2anc 661 . . . 4  |-  ( ph  ->  B  e.  ( LSubSp `  ( (ringLMod `  R
)  ^s  I ) ) )
178, 14lssss 17136 . . . 4  |-  ( B  e.  ( LSubSp `  (
(ringLMod `  R )  ^s  I
) )  ->  B  C_  ( Base `  (
(ringLMod `  R )  ^s  I
) ) )
1816, 17syl 16 . . 3  |-  ( ph  ->  B  C_  ( Base `  ( (ringLMod `  R
)  ^s  I ) ) )
19 frlmgsum.f . . . 4  |-  ( (
ph  /\  y  e.  J )  ->  (
x  e.  I  |->  U )  e.  B )
20 eqid 2452 . . . 4  |-  ( y  e.  J  |->  ( x  e.  I  |->  U ) )  =  ( y  e.  J  |->  ( x  e.  I  |->  U ) )
2119, 20fmptd 5971 . . 3  |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) : J --> B )
22 rlmlmod 17404 . . . . . 6  |-  ( R  e.  Ring  ->  (ringLMod `  R
)  e.  LMod )
231, 22syl 16 . . . . 5  |-  ( ph  ->  (ringLMod `  R )  e.  LMod )
24 eqid 2452 . . . . . 6  |-  ( (ringLMod `  R )  ^s  I )  =  ( (ringLMod `  R
)  ^s  I )
2524pwslmod 17169 . . . . 5  |-  ( ( (ringLMod `  R )  e.  LMod  /\  I  e.  V )  ->  (
(ringLMod `  R )  ^s  I
)  e.  LMod )
2623, 2, 25syl2anc 661 . . . 4  |-  ( ph  ->  ( (ringLMod `  R
)  ^s  I )  e.  LMod )
27 eqid 2452 . . . . 5  |-  ( 0g
`  ( (ringLMod `  R
)  ^s  I ) )  =  ( 0g `  (
(ringLMod `  R )  ^s  I
) )
2827, 14lss0cl 17146 . . . 4  |-  ( ( ( (ringLMod `  R
)  ^s  I )  e.  LMod  /\  B  e.  ( LSubSp `  ( (ringLMod `  R
)  ^s  I ) ) )  ->  ( 0g `  ( (ringLMod `  R )  ^s  I ) )  e.  B )
2926, 16, 28syl2anc 661 . . 3  |-  ( ph  ->  ( 0g `  (
(ringLMod `  R )  ^s  I
) )  e.  B
)
30 lmodcmn 17111 . . . . . . 7  |-  ( (ringLMod `  R )  e.  LMod  -> 
(ringLMod `  R )  e. CMnd
)
3123, 30syl 16 . . . . . 6  |-  ( ph  ->  (ringLMod `  R )  e. CMnd )
32 cmnmnd 16408 . . . . . 6  |-  ( (ringLMod `  R )  e. CMnd  ->  (ringLMod `  R )  e.  Mnd )
3331, 32syl 16 . . . . 5  |-  ( ph  ->  (ringLMod `  R )  e.  Mnd )
3424pwsmnd 15570 . . . . 5  |-  ( ( (ringLMod `  R )  e.  Mnd  /\  I  e.  V )  ->  (
(ringLMod `  R )  ^s  I
)  e.  Mnd )
3533, 2, 34syl2anc 661 . . . 4  |-  ( ph  ->  ( (ringLMod `  R
)  ^s  I )  e.  Mnd )
368, 9, 27mndlrid 15554 . . . 4  |-  ( ( ( (ringLMod `  R
)  ^s  I )  e.  Mnd  /\  x  e.  ( Base `  ( (ringLMod `  R
)  ^s  I ) ) )  ->  ( ( ( 0g `  ( (ringLMod `  R )  ^s  I ) ) ( +g  `  (
(ringLMod `  R )  ^s  I
) ) x )  =  x  /\  (
x ( +g  `  (
(ringLMod `  R )  ^s  I
) ) ( 0g
`  ( (ringLMod `  R
)  ^s  I ) ) )  =  x ) )
3735, 36sylan 471 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  ( (ringLMod `  R )  ^s  I ) ) )  ->  (
( ( 0g `  ( (ringLMod `  R )  ^s  I ) ) ( +g  `  ( (ringLMod `  R )  ^s  I ) ) x )  =  x  /\  ( x ( +g  `  (
(ringLMod `  R )  ^s  I
) ) ( 0g
`  ( (ringLMod `  R
)  ^s  I ) ) )  =  x ) )
388, 9, 10, 12, 13, 18, 21, 29, 37gsumress 15621 . 2  |-  ( ph  ->  ( ( (ringLMod `  R
)  ^s  I )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( ( ( (ringLMod `  R )  ^s  I )s  B )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) )
39 rlmbas 17394 . . . 4  |-  ( Base `  R )  =  (
Base `  (ringLMod `  R
) )
402adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  J )  ->  I  e.  V )
41 eqid 2452 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
423, 41, 4frlmbasf 18308 . . . . . . . . 9  |-  ( ( I  e.  V  /\  ( x  e.  I  |->  U )  e.  B
)  ->  ( x  e.  I  |->  U ) : I --> ( Base `  R ) )
4340, 19, 42syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  y  e.  J )  ->  (
x  e.  I  |->  U ) : I --> ( Base `  R ) )
44 eqid 2452 . . . . . . . . 9  |-  ( x  e.  I  |->  U )  =  ( x  e.  I  |->  U )
4544fmpt 5968 . . . . . . . 8  |-  ( A. x  e.  I  U  e.  ( Base `  R
)  <->  ( x  e.  I  |->  U ) : I --> ( Base `  R
) )
4643, 45sylibr 212 . . . . . . 7  |-  ( (
ph  /\  y  e.  J )  ->  A. x  e.  I  U  e.  ( Base `  R )
)
4746r19.21bi 2914 . . . . . 6  |-  ( ( ( ph  /\  y  e.  J )  /\  x  e.  I )  ->  U  e.  ( Base `  R
) )
4847an32s 802 . . . . 5  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  U  e.  ( Base `  R
) )
4948anasss 647 . . . 4  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  J ) )  ->  U  e.  ( Base `  R ) )
50 frlmgsum.w . . . . 5  |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) finSupp  .0.  )
51 frlmgsum.z . . . . . 6  |-  .0.  =  ( 0g `  Y )
526fveq2d 5798 . . . . . . 7  |-  ( ph  ->  ( 0g `  Y
)  =  ( 0g
`  ( ( (ringLMod `  R )  ^s  I )s  B ) ) )
5314lsssubg 17156 . . . . . . . . 9  |-  ( ( ( (ringLMod `  R
)  ^s  I )  e.  LMod  /\  B  e.  ( LSubSp `  ( (ringLMod `  R
)  ^s  I ) ) )  ->  B  e.  (SubGrp `  ( (ringLMod `  R
)  ^s  I ) ) )
5426, 16, 53syl2anc 661 . . . . . . . 8  |-  ( ph  ->  B  e.  (SubGrp `  ( (ringLMod `  R )  ^s  I ) ) )
5510, 27subg0 15801 . . . . . . . 8  |-  ( B  e.  (SubGrp `  (
(ringLMod `  R )  ^s  I
) )  ->  ( 0g `  ( (ringLMod `  R
)  ^s  I ) )  =  ( 0g `  (
( (ringLMod `  R )  ^s  I )s  B ) ) )
5654, 55syl 16 . . . . . . 7  |-  ( ph  ->  ( 0g `  (
(ringLMod `  R )  ^s  I
) )  =  ( 0g `  ( ( (ringLMod `  R )  ^s  I )s  B ) ) )
5752, 56eqtr4d 2496 . . . . . 6  |-  ( ph  ->  ( 0g `  Y
)  =  ( 0g
`  ( (ringLMod `  R
)  ^s  I ) ) )
5851, 57syl5eq 2505 . . . . 5  |-  ( ph  ->  .0.  =  ( 0g
`  ( (ringLMod `  R
)  ^s  I ) ) )
5950, 58breqtrd 4419 . . . 4  |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) finSupp  ( 0g `  ( (ringLMod `  R
)  ^s  I ) ) )
6024, 39, 27, 2, 13, 31, 49, 59pwsgsum 16590 . . 3  |-  ( ph  ->  ( ( (ringLMod `  R
)  ^s  I )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( (ringLMod `  R
)  gsumg  ( y  e.  J  |->  U ) ) ) )
61 mptexg 6051 . . . . . 6  |-  ( J  e.  W  ->  (
y  e.  J  |->  U )  e.  _V )
6213, 61syl 16 . . . . 5  |-  ( ph  ->  ( y  e.  J  |->  U )  e.  _V )
63 fvex 5804 . . . . . 6  |-  (ringLMod `  R
)  e.  _V
6463a1i 11 . . . . 5  |-  ( ph  ->  (ringLMod `  R )  e.  _V )
6539a1i 11 . . . . 5  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (ringLMod `  R )
) )
66 rlmplusg 17395 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  (ringLMod `  R
) )
6766a1i 11 . . . . 5  |-  ( ph  ->  ( +g  `  R
)  =  ( +g  `  (ringLMod `  R )
) )
6862, 1, 64, 65, 67gsumpropd 15618 . . . 4  |-  ( ph  ->  ( R  gsumg  ( y  e.  J  |->  U ) )  =  ( (ringLMod `  R
)  gsumg  ( y  e.  J  |->  U ) ) )
6968mpteq2dv 4482 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) )  =  ( x  e.  I  |->  ( (ringLMod `  R
)  gsumg  ( y  e.  J  |->  U ) ) ) )
7060, 69eqtr4d 2496 . 2  |-  ( ph  ->  ( ( (ringLMod `  R
)  ^s  I )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
717, 38, 703eqtr2d 2499 1  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2796   _Vcvv 3072    C_ wss 3431   class class class wbr 4395    |-> cmpt 4453   -->wf 5517   ` cfv 5521  (class class class)co 6195   finSupp cfsupp 7726   Basecbs 14287   ↾s cress 14288   +g cplusg 14352   0gc0g 14492    gsumg cgsu 14493    ^s cpws 14499   Mndcmnd 15523  SubGrpcsubg 15789  CMndccmn 16393   Ringcrg 16763   LModclmod 17066   LSubSpclss 17131  ringLModcrglmod 17368   freeLMod cfrlm 18291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-isom 5530  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-supp 6796  df-recs 6937  df-rdg 6971  df-1o 7025  df-oadd 7029  df-er 7206  df-map 7321  df-ixp 7369  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-fsupp 7727  df-sup 7797  df-oi 7830  df-card 8215  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-nn 10429  df-2 10486  df-3 10487  df-4 10488  df-5 10489  df-6 10490  df-7 10491  df-8 10492  df-9 10493  df-10 10494  df-n0 10686  df-z 10753  df-dec 10862  df-uz 10968  df-fz 11550  df-fzo 11661  df-seq 11919  df-hash 12216  df-struct 14289  df-ndx 14290  df-slot 14291  df-base 14292  df-sets 14293  df-ress 14294  df-plusg 14365  df-mulr 14366  df-sca 14368  df-vsca 14369  df-ip 14370  df-tset 14371  df-ple 14372  df-ds 14374  df-hom 14376  df-cco 14377  df-0g 14494  df-gsum 14495  df-prds 14500  df-pws 14502  df-mnd 15529  df-mhm 15578  df-grp 15659  df-minusg 15660  df-sbg 15661  df-subg 15792  df-cntz 15949  df-cmn 16395  df-abl 16396  df-mgp 16709  df-ur 16721  df-rng 16765  df-subrg 16981  df-lmod 17068  df-lss 17132  df-sra 17371  df-rgmod 17372  df-dsmm 18277  df-frlm 18292
This theorem is referenced by:  uvcresum  18338  matgsum  31022
  Copyright terms: Public domain W3C validator