MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmgsum Structured version   Visualization version   Unicode version

Theorem frlmgsum 19323
Description: Finite commutative sums in a free module are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 5-Jul-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmgsum.y  |-  Y  =  ( R freeLMod  I )
frlmgsum.b  |-  B  =  ( Base `  Y
)
frlmgsum.z  |-  .0.  =  ( 0g `  Y )
frlmgsum.i  |-  ( ph  ->  I  e.  V )
frlmgsum.j  |-  ( ph  ->  J  e.  W )
frlmgsum.r  |-  ( ph  ->  R  e.  Ring )
frlmgsum.f  |-  ( (
ph  /\  y  e.  J )  ->  (
x  e.  I  |->  U )  e.  B )
frlmgsum.w  |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) finSupp  .0.  )
Assertion
Ref Expression
frlmgsum  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
Distinct variable groups:    x, y, B    x, I, y    ph, x, y    x,  .0. , y    x, J, y    x, R, y   
x, Y, y
Allowed substitution hints:    U( x, y)    V( x, y)    W( x, y)

Proof of Theorem frlmgsum
StepHypRef Expression
1 frlmgsum.r . . . 4  |-  ( ph  ->  R  e.  Ring )
2 frlmgsum.i . . . 4  |-  ( ph  ->  I  e.  V )
3 frlmgsum.y . . . . 5  |-  Y  =  ( R freeLMod  I )
4 frlmgsum.b . . . . 5  |-  B  =  ( Base `  Y
)
53, 4frlmpws 19306 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  Y  =  ( ( (ringLMod `  R )  ^s  I )s  B ) )
61, 2, 5syl2anc 666 . . 3  |-  ( ph  ->  Y  =  ( ( (ringLMod `  R )  ^s  I )s  B ) )
76oveq1d 6303 . 2  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( ( ( (ringLMod `  R )  ^s  I )s  B )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) )
8 eqid 2450 . . 3  |-  ( Base `  ( (ringLMod `  R
)  ^s  I ) )  =  ( Base `  (
(ringLMod `  R )  ^s  I
) )
9 eqid 2450 . . 3  |-  ( +g  `  ( (ringLMod `  R
)  ^s  I ) )  =  ( +g  `  (
(ringLMod `  R )  ^s  I
) )
10 eqid 2450 . . 3  |-  ( ( (ringLMod `  R )  ^s  I )s  B )  =  ( ( (ringLMod `  R
)  ^s  I )s  B )
11 ovex 6316 . . . 4  |-  ( (ringLMod `  R )  ^s  I )  e.  _V
1211a1i 11 . . 3  |-  ( ph  ->  ( (ringLMod `  R
)  ^s  I )  e.  _V )
13 frlmgsum.j . . 3  |-  ( ph  ->  J  e.  W )
14 eqid 2450 . . . . . 6  |-  ( LSubSp `  ( (ringLMod `  R
)  ^s  I ) )  =  ( LSubSp `  ( (ringLMod `  R )  ^s  I ) )
153, 4, 14frlmlss 19307 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  B  e.  ( LSubSp `  ( (ringLMod `  R )  ^s  I ) ) )
161, 2, 15syl2anc 666 . . . 4  |-  ( ph  ->  B  e.  ( LSubSp `  ( (ringLMod `  R
)  ^s  I ) ) )
178, 14lssss 18153 . . . 4  |-  ( B  e.  ( LSubSp `  (
(ringLMod `  R )  ^s  I
) )  ->  B  C_  ( Base `  (
(ringLMod `  R )  ^s  I
) ) )
1816, 17syl 17 . . 3  |-  ( ph  ->  B  C_  ( Base `  ( (ringLMod `  R
)  ^s  I ) ) )
19 frlmgsum.f . . . 4  |-  ( (
ph  /\  y  e.  J )  ->  (
x  e.  I  |->  U )  e.  B )
20 eqid 2450 . . . 4  |-  ( y  e.  J  |->  ( x  e.  I  |->  U ) )  =  ( y  e.  J  |->  ( x  e.  I  |->  U ) )
2119, 20fmptd 6044 . . 3  |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) : J --> B )
22 rlmlmod 18421 . . . . . 6  |-  ( R  e.  Ring  ->  (ringLMod `  R
)  e.  LMod )
231, 22syl 17 . . . . 5  |-  ( ph  ->  (ringLMod `  R )  e.  LMod )
24 eqid 2450 . . . . . 6  |-  ( (ringLMod `  R )  ^s  I )  =  ( (ringLMod `  R
)  ^s  I )
2524pwslmod 18186 . . . . 5  |-  ( ( (ringLMod `  R )  e.  LMod  /\  I  e.  V )  ->  (
(ringLMod `  R )  ^s  I
)  e.  LMod )
2623, 2, 25syl2anc 666 . . . 4  |-  ( ph  ->  ( (ringLMod `  R
)  ^s  I )  e.  LMod )
27 eqid 2450 . . . . 5  |-  ( 0g
`  ( (ringLMod `  R
)  ^s  I ) )  =  ( 0g `  (
(ringLMod `  R )  ^s  I
) )
2827, 14lss0cl 18163 . . . 4  |-  ( ( ( (ringLMod `  R
)  ^s  I )  e.  LMod  /\  B  e.  ( LSubSp `  ( (ringLMod `  R
)  ^s  I ) ) )  ->  ( 0g `  ( (ringLMod `  R )  ^s  I ) )  e.  B )
2926, 16, 28syl2anc 666 . . 3  |-  ( ph  ->  ( 0g `  (
(ringLMod `  R )  ^s  I
) )  e.  B
)
30 lmodcmn 18129 . . . . . . 7  |-  ( (ringLMod `  R )  e.  LMod  -> 
(ringLMod `  R )  e. CMnd
)
3123, 30syl 17 . . . . . 6  |-  ( ph  ->  (ringLMod `  R )  e. CMnd )
32 cmnmnd 17438 . . . . . 6  |-  ( (ringLMod `  R )  e. CMnd  ->  (ringLMod `  R )  e.  Mnd )
3331, 32syl 17 . . . . 5  |-  ( ph  ->  (ringLMod `  R )  e.  Mnd )
3424pwsmnd 16564 . . . . 5  |-  ( ( (ringLMod `  R )  e.  Mnd  /\  I  e.  V )  ->  (
(ringLMod `  R )  ^s  I
)  e.  Mnd )
3533, 2, 34syl2anc 666 . . . 4  |-  ( ph  ->  ( (ringLMod `  R
)  ^s  I )  e.  Mnd )
368, 9, 27mndlrid 16549 . . . 4  |-  ( ( ( (ringLMod `  R
)  ^s  I )  e.  Mnd  /\  x  e.  ( Base `  ( (ringLMod `  R
)  ^s  I ) ) )  ->  ( ( ( 0g `  ( (ringLMod `  R )  ^s  I ) ) ( +g  `  (
(ringLMod `  R )  ^s  I
) ) x )  =  x  /\  (
x ( +g  `  (
(ringLMod `  R )  ^s  I
) ) ( 0g
`  ( (ringLMod `  R
)  ^s  I ) ) )  =  x ) )
3735, 36sylan 474 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  ( (ringLMod `  R )  ^s  I ) ) )  ->  (
( ( 0g `  ( (ringLMod `  R )  ^s  I ) ) ( +g  `  ( (ringLMod `  R )  ^s  I ) ) x )  =  x  /\  ( x ( +g  `  (
(ringLMod `  R )  ^s  I
) ) ( 0g
`  ( (ringLMod `  R
)  ^s  I ) ) )  =  x ) )
388, 9, 10, 12, 13, 18, 21, 29, 37gsumress 16512 . 2  |-  ( ph  ->  ( ( (ringLMod `  R
)  ^s  I )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( ( ( (ringLMod `  R )  ^s  I )s  B )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) )
39 rlmbas 18411 . . . 4  |-  ( Base `  R )  =  (
Base `  (ringLMod `  R
) )
402adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  J )  ->  I  e.  V )
41 eqid 2450 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
423, 41, 4frlmbasf 19316 . . . . . . . . 9  |-  ( ( I  e.  V  /\  ( x  e.  I  |->  U )  e.  B
)  ->  ( x  e.  I  |->  U ) : I --> ( Base `  R ) )
4340, 19, 42syl2anc 666 . . . . . . . 8  |-  ( (
ph  /\  y  e.  J )  ->  (
x  e.  I  |->  U ) : I --> ( Base `  R ) )
44 eqid 2450 . . . . . . . . 9  |-  ( x  e.  I  |->  U )  =  ( x  e.  I  |->  U )
4544fmpt 6041 . . . . . . . 8  |-  ( A. x  e.  I  U  e.  ( Base `  R
)  <->  ( x  e.  I  |->  U ) : I --> ( Base `  R
) )
4643, 45sylibr 216 . . . . . . 7  |-  ( (
ph  /\  y  e.  J )  ->  A. x  e.  I  U  e.  ( Base `  R )
)
4746r19.21bi 2756 . . . . . 6  |-  ( ( ( ph  /\  y  e.  J )  /\  x  e.  I )  ->  U  e.  ( Base `  R
) )
4847an32s 812 . . . . 5  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  U  e.  ( Base `  R
) )
4948anasss 652 . . . 4  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  J ) )  ->  U  e.  ( Base `  R ) )
50 frlmgsum.w . . . . 5  |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) finSupp  .0.  )
51 frlmgsum.z . . . . . 6  |-  .0.  =  ( 0g `  Y )
526fveq2d 5867 . . . . . . 7  |-  ( ph  ->  ( 0g `  Y
)  =  ( 0g
`  ( ( (ringLMod `  R )  ^s  I )s  B ) ) )
5314lsssubg 18173 . . . . . . . . 9  |-  ( ( ( (ringLMod `  R
)  ^s  I )  e.  LMod  /\  B  e.  ( LSubSp `  ( (ringLMod `  R
)  ^s  I ) ) )  ->  B  e.  (SubGrp `  ( (ringLMod `  R
)  ^s  I ) ) )
5426, 16, 53syl2anc 666 . . . . . . . 8  |-  ( ph  ->  B  e.  (SubGrp `  ( (ringLMod `  R )  ^s  I ) ) )
5510, 27subg0 16816 . . . . . . . 8  |-  ( B  e.  (SubGrp `  (
(ringLMod `  R )  ^s  I
) )  ->  ( 0g `  ( (ringLMod `  R
)  ^s  I ) )  =  ( 0g `  (
( (ringLMod `  R )  ^s  I )s  B ) ) )
5654, 55syl 17 . . . . . . 7  |-  ( ph  ->  ( 0g `  (
(ringLMod `  R )  ^s  I
) )  =  ( 0g `  ( ( (ringLMod `  R )  ^s  I )s  B ) ) )
5752, 56eqtr4d 2487 . . . . . 6  |-  ( ph  ->  ( 0g `  Y
)  =  ( 0g
`  ( (ringLMod `  R
)  ^s  I ) ) )
5851, 57syl5eq 2496 . . . . 5  |-  ( ph  ->  .0.  =  ( 0g
`  ( (ringLMod `  R
)  ^s  I ) ) )
5950, 58breqtrd 4426 . . . 4  |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) finSupp  ( 0g `  ( (ringLMod `  R
)  ^s  I ) ) )
6024, 39, 27, 2, 13, 31, 49, 59pwsgsum 17604 . . 3  |-  ( ph  ->  ( ( (ringLMod `  R
)  ^s  I )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( (ringLMod `  R
)  gsumg  ( y  e.  J  |->  U ) ) ) )
61 mptexg 6133 . . . . . 6  |-  ( J  e.  W  ->  (
y  e.  J  |->  U )  e.  _V )
6213, 61syl 17 . . . . 5  |-  ( ph  ->  ( y  e.  J  |->  U )  e.  _V )
63 fvex 5873 . . . . . 6  |-  (ringLMod `  R
)  e.  _V
6463a1i 11 . . . . 5  |-  ( ph  ->  (ringLMod `  R )  e.  _V )
6539a1i 11 . . . . 5  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (ringLMod `  R )
) )
66 rlmplusg 18412 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  (ringLMod `  R
) )
6766a1i 11 . . . . 5  |-  ( ph  ->  ( +g  `  R
)  =  ( +g  `  (ringLMod `  R )
) )
6862, 1, 64, 65, 67gsumpropd 16508 . . . 4  |-  ( ph  ->  ( R  gsumg  ( y  e.  J  |->  U ) )  =  ( (ringLMod `  R
)  gsumg  ( y  e.  J  |->  U ) ) )
6968mpteq2dv 4489 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) )  =  ( x  e.  I  |->  ( (ringLMod `  R
)  gsumg  ( y  e.  J  |->  U ) ) ) )
7060, 69eqtr4d 2487 . 2  |-  ( ph  ->  ( ( (ringLMod `  R
)  ^s  I )  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
717, 38, 703eqtr2d 2490 1  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1443    e. wcel 1886   A.wral 2736   _Vcvv 3044    C_ wss 3403   class class class wbr 4401    |-> cmpt 4460   -->wf 5577   ` cfv 5581  (class class class)co 6288   finSupp cfsupp 7880   Basecbs 15114   ↾s cress 15115   +g cplusg 15183   0gc0g 15331    gsumg cgsu 15332    ^s cpws 15338   Mndcmnd 16528  SubGrpcsubg 16804  CMndccmn 17423   Ringcrg 17773   LModclmod 18084   LSubSpclss 18148  ringLModcrglmod 18385   freeLMod cfrlm 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-supp 6912  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-oadd 7183  df-er 7360  df-map 7471  df-ixp 7520  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-fsupp 7881  df-sup 7953  df-oi 8022  df-card 8370  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-nn 10607  df-2 10665  df-3 10666  df-4 10667  df-5 10668  df-6 10669  df-7 10670  df-8 10671  df-9 10672  df-10 10673  df-n0 10867  df-z 10935  df-dec 11049  df-uz 11157  df-fz 11782  df-fzo 11913  df-seq 12211  df-hash 12513  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-hom 15207  df-cco 15208  df-0g 15333  df-gsum 15334  df-prds 15339  df-pws 15341  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-mhm 16575  df-grp 16666  df-minusg 16667  df-sbg 16668  df-subg 16807  df-cntz 16964  df-cmn 17425  df-abl 17426  df-mgp 17717  df-ur 17729  df-ring 17775  df-subrg 17999  df-lmod 18086  df-lss 18149  df-sra 18388  df-rgmod 18389  df-dsmm 19288  df-frlm 19303
This theorem is referenced by:  uvcresum  19344  matgsum  19455  aacllem  40527
  Copyright terms: Public domain W3C validator