Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frinsg Structured version   Unicode version

Theorem frinsg 28930
Description: Founded Induction Schema. If a property passes from all elements less than  y of a founded class  A to  y itself (induction hypothesis), then the property holds for all elements of  A. (Contributed by Scott Fenton, 7-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
frinsg.1  |-  ( y  e.  A  ->  ( A. z  e.  Pred  ( R ,  A , 
y ) [. z  /  y ]. ph  ->  ph ) )
Assertion
Ref Expression
frinsg  |-  ( ( R  Fr  A  /\  R Se  A )  ->  A. y  e.  A  ph )
Distinct variable groups:    y, A, z    ph, z    y, R, z
Allowed substitution hint:    ph( y)

Proof of Theorem frinsg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3585 . . 3  |-  { y  e.  A  |  ph }  C_  A
2 dfss3 3494 . . . . . . . 8  |-  ( Pred ( R ,  A ,  w )  C_  { y  e.  A  |  ph } 
<-> 
A. z  e.  Pred  ( R ,  A ,  w ) z  e. 
{ y  e.  A  |  ph } )
3 nfcv 2629 . . . . . . . . . . 11  |-  F/_ y A
43elrabsf 3370 . . . . . . . . . 10  |-  ( z  e.  { y  e.  A  |  ph }  <->  ( z  e.  A  /\  [. z  /  y ]. ph ) )
54simprbi 464 . . . . . . . . 9  |-  ( z  e.  { y  e.  A  |  ph }  ->  [. z  /  y ]. ph )
65ralimi 2857 . . . . . . . 8  |-  ( A. z  e.  Pred  ( R ,  A ,  w
) z  e.  {
y  e.  A  |  ph }  ->  A. z  e.  Pred  ( R ,  A ,  w ) [. z  /  y ]. ph )
72, 6sylbi 195 . . . . . . 7  |-  ( Pred ( R ,  A ,  w )  C_  { y  e.  A  |  ph }  ->  A. z  e.  Pred  ( R ,  A ,  w ) [. z  /  y ]. ph )
8 nfv 1683 . . . . . . . . 9  |-  F/ y  w  e.  A
9 nfcv 2629 . . . . . . . . . . 11  |-  F/_ y Pred ( R ,  A ,  w )
10 nfsbc1v 3351 . . . . . . . . . . 11  |-  F/ y
[. z  /  y ]. ph
119, 10nfral 2850 . . . . . . . . . 10  |-  F/ y A. z  e.  Pred  ( R ,  A ,  w ) [. z  /  y ]. ph
12 nfsbc1v 3351 . . . . . . . . . 10  |-  F/ y
[. w  /  y ]. ph
1311, 12nfim 1867 . . . . . . . . 9  |-  F/ y ( A. z  e. 
Pred  ( R ,  A ,  w ) [. z  /  y ]. ph  ->  [. w  / 
y ]. ph )
148, 13nfim 1867 . . . . . . . 8  |-  F/ y ( w  e.  A  ->  ( A. z  e. 
Pred  ( R ,  A ,  w ) [. z  /  y ]. ph  ->  [. w  / 
y ]. ph ) )
15 eleq1 2539 . . . . . . . . 9  |-  ( y  =  w  ->  (
y  e.  A  <->  w  e.  A ) )
16 predeq3 28853 . . . . . . . . . . 11  |-  ( y  =  w  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A ,  w ) )
1716raleqdv 3064 . . . . . . . . . 10  |-  ( y  =  w  ->  ( A. z  e.  Pred  ( R ,  A , 
y ) [. z  /  y ]. ph  <->  A. z  e.  Pred  ( R ,  A ,  w ) [. z  /  y ]. ph ) )
18 sbceq1a 3342 . . . . . . . . . 10  |-  ( y  =  w  ->  ( ph 
<-> 
[. w  /  y ]. ph ) )
1917, 18imbi12d 320 . . . . . . . . 9  |-  ( y  =  w  ->  (
( A. z  e. 
Pred  ( R ,  A ,  y ) [. z  /  y ]. ph  ->  ph )  <->  ( A. z  e.  Pred  ( R ,  A ,  w
) [. z  /  y ]. ph  ->  [. w  / 
y ]. ph ) ) )
2015, 19imbi12d 320 . . . . . . . 8  |-  ( y  =  w  ->  (
( y  e.  A  ->  ( A. z  e. 
Pred  ( R ,  A ,  y ) [. z  /  y ]. ph  ->  ph ) )  <-> 
( w  e.  A  ->  ( A. z  e. 
Pred  ( R ,  A ,  w ) [. z  /  y ]. ph  ->  [. w  / 
y ]. ph ) ) ) )
21 frinsg.1 . . . . . . . 8  |-  ( y  e.  A  ->  ( A. z  e.  Pred  ( R ,  A , 
y ) [. z  /  y ]. ph  ->  ph ) )
2214, 20, 21chvar 1982 . . . . . . 7  |-  ( w  e.  A  ->  ( A. z  e.  Pred  ( R ,  A ,  w ) [. z  /  y ]. ph  ->  [. w  /  y ]. ph ) )
237, 22syl5 32 . . . . . 6  |-  ( w  e.  A  ->  ( Pred ( R ,  A ,  w )  C_  { y  e.  A  |  ph }  ->  [. w  /  y ]. ph ) )
2423anc2li 557 . . . . 5  |-  ( w  e.  A  ->  ( Pred ( R ,  A ,  w )  C_  { y  e.  A  |  ph }  ->  ( w  e.  A  /\  [. w  /  y ]. ph )
) )
253elrabsf 3370 . . . . 5  |-  ( w  e.  { y  e.  A  |  ph }  <->  ( w  e.  A  /\  [. w  /  y ]. ph ) )
2624, 25syl6ibr 227 . . . 4  |-  ( w  e.  A  ->  ( Pred ( R ,  A ,  w )  C_  { y  e.  A  |  ph }  ->  w  e.  {
y  e.  A  |  ph } ) )
2726rgen 2824 . . 3  |-  A. w  e.  A  ( Pred ( R ,  A ,  w )  C_  { y  e.  A  |  ph }  ->  w  e.  {
y  e.  A  |  ph } )
28 frind 28928 . . 3  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( { y  e.  A  |  ph }  C_  A  /\  A. w  e.  A  ( Pred ( R ,  A ,  w )  C_  { y  e.  A  |  ph }  ->  w  e.  {
y  e.  A  |  ph } ) ) )  ->  A  =  {
y  e.  A  |  ph } )
291, 27, 28mpanr12 685 . 2  |-  ( ( R  Fr  A  /\  R Se  A )  ->  A  =  { y  e.  A  |  ph } )
30 rabid2 3039 . 2  |-  ( A  =  { y  e.  A  |  ph }  <->  A. y  e.  A  ph )
3129, 30sylib 196 1  |-  ( ( R  Fr  A  /\  R Se  A )  ->  A. y  e.  A  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818   [.wsbc 3331    C_ wss 3476    Fr wfr 4835   Se wse 4836   Predcpred 28848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6685  df-recs 7042  df-rdg 7076  df-pred 28849  df-trpred 28906
This theorem is referenced by:  frins  28931  frins2fg  28932
  Copyright terms: Public domain W3C validator