MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  friendshipgt3 Structured version   Unicode version

Theorem friendshipgt3 24826
Description: The friendship theorem for big graphs: In every finite friendship graph with order greater than 3 there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 9-Oct-2018.)
Assertion
Ref Expression
friendshipgt3  |-  ( ( V FriendGrph  E  /\  V  e. 
Fin  /\  3  <  (
# `  V )
)  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E )
Distinct variable groups:    v, E, w    v, V, w

Proof of Theorem friendshipgt3
Dummy variables  m  n  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgraregorufrg 24777 . . 3  |-  ( V FriendGrph  E  ->  A. n  e.  NN0  ( E. u  e.  V  ( ( V VDeg  E
) `  u )  =  n  ->  ( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) ) )
213ad2ant1 1017 . 2  |-  ( ( V FriendGrph  E  /\  V  e. 
Fin  /\  3  <  (
# `  V )
)  ->  A. n  e.  NN0  ( E. u  e.  V  ( ( V VDeg  E ) `  u
)  =  n  -> 
( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) ) )
3 frgraogt3nreg 24825 . 2  |-  ( ( V FriendGrph  E  /\  V  e. 
Fin  /\  3  <  (
# `  V )
)  ->  A. n  e.  NN0  -.  <. V ,  E >. RegUSGrph  n )
4 frisusgra 24696 . . . . 5  |-  ( V FriendGrph  E  ->  V USGrph  E )
543ad2ant1 1017 . . . 4  |-  ( ( V FriendGrph  E  /\  V  e. 
Fin  /\  3  <  (
# `  V )
)  ->  V USGrph  E )
6 simp2 997 . . . 4  |-  ( ( V FriendGrph  E  /\  V  e. 
Fin  /\  3  <  (
# `  V )
)  ->  V  e.  Fin )
7 0red 9597 . . . . . . . 8  |-  ( ( V  e.  Fin  /\  3  <  ( # `  V
) )  ->  0  e.  RR )
8 3re 10609 . . . . . . . . 9  |-  3  e.  RR
98a1i 11 . . . . . . . 8  |-  ( ( V  e.  Fin  /\  3  <  ( # `  V
) )  ->  3  e.  RR )
10 hashcl 12396 . . . . . . . . . 10  |-  ( V  e.  Fin  ->  ( # `
 V )  e. 
NN0 )
1110nn0red 10853 . . . . . . . . 9  |-  ( V  e.  Fin  ->  ( # `
 V )  e.  RR )
1211adantr 465 . . . . . . . 8  |-  ( ( V  e.  Fin  /\  3  <  ( # `  V
) )  ->  ( # `
 V )  e.  RR )
13 3pos 10629 . . . . . . . . 9  |-  0  <  3
1413a1i 11 . . . . . . . 8  |-  ( ( V  e.  Fin  /\  3  <  ( # `  V
) )  ->  0  <  3 )
15 simpr 461 . . . . . . . 8  |-  ( ( V  e.  Fin  /\  3  <  ( # `  V
) )  ->  3  <  ( # `  V
) )
167, 9, 12, 14, 15lttrd 9742 . . . . . . 7  |-  ( ( V  e.  Fin  /\  3  <  ( # `  V
) )  ->  0  <  ( # `  V
) )
1716gt0ne0d 10117 . . . . . 6  |-  ( ( V  e.  Fin  /\  3  <  ( # `  V
) )  ->  ( # `
 V )  =/=  0 )
18 hasheq0 12401 . . . . . . . 8  |-  ( V  e.  Fin  ->  (
( # `  V )  =  0  <->  V  =  (/) ) )
1918adantr 465 . . . . . . 7  |-  ( ( V  e.  Fin  /\  3  <  ( # `  V
) )  ->  (
( # `  V )  =  0  <->  V  =  (/) ) )
2019necon3bid 2725 . . . . . 6  |-  ( ( V  e.  Fin  /\  3  <  ( # `  V
) )  ->  (
( # `  V )  =/=  0  <->  V  =/=  (/) ) )
2117, 20mpbid 210 . . . . 5  |-  ( ( V  e.  Fin  /\  3  <  ( # `  V
) )  ->  V  =/=  (/) )
22213adant1 1014 . . . 4  |-  ( ( V FriendGrph  E  /\  V  e. 
Fin  /\  3  <  (
# `  V )
)  ->  V  =/=  (/) )
23 usgn0fidegnn0 24734 . . . 4  |-  ( ( V USGrph  E  /\  V  e. 
Fin  /\  V  =/=  (/) )  ->  E. t  e.  V  E. m  e.  NN0  ( ( V VDeg 
E ) `  t
)  =  m )
245, 6, 22, 23syl3anc 1228 . . 3  |-  ( ( V FriendGrph  E  /\  V  e. 
Fin  /\  3  <  (
# `  V )
)  ->  E. t  e.  V  E. m  e.  NN0  ( ( V VDeg 
E ) `  t
)  =  m )
25 r19.26 2989 . . . . . . . 8  |-  ( A. n  e.  NN0  ( ( E. u  e.  V  ( ( V VDeg  E
) `  u )  =  n  ->  ( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) )  /\  -.  <. V ,  E >. RegUSGrph  n
)  <->  ( A. n  e.  NN0  ( E. u  e.  V  ( ( V VDeg  E ) `  u
)  =  n  -> 
( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )  /\  A. n  e. 
NN0  -.  <. V ,  E >. RegUSGrph  n ) )
26 simpllr 758 . . . . . . . . . 10  |-  ( ( ( ( t  e.  V  /\  m  e. 
NN0 )  /\  (
( V VDeg  E ) `  t )  =  m )  /\  ( V FriendGrph  E  /\  V  e.  Fin  /\  3  <  ( # `  V ) ) )  ->  m  e.  NN0 )
27 fveq2 5866 . . . . . . . . . . . . . . . . 17  |-  ( u  =  t  ->  (
( V VDeg  E ) `  u )  =  ( ( V VDeg  E ) `
 t ) )
2827eqeq1d 2469 . . . . . . . . . . . . . . . 16  |-  ( u  =  t  ->  (
( ( V VDeg  E
) `  u )  =  m  <->  ( ( V VDeg 
E ) `  t
)  =  m ) )
2928rspcev 3214 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  V  /\  ( ( V VDeg  E
) `  t )  =  m )  ->  E. u  e.  V  ( ( V VDeg  E ) `  u
)  =  m )
3029adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( t  e.  V  /\  m  e.  NN0 )  /\  ( ( V VDeg 
E ) `  t
)  =  m )  ->  E. u  e.  V  ( ( V VDeg  E
) `  u )  =  m )
3130adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( t  e.  V  /\  m  e. 
NN0 )  /\  (
( V VDeg  E ) `  t )  =  m )  /\  ( V FriendGrph  E  /\  V  e.  Fin  /\  3  <  ( # `  V ) ) )  ->  E. u  e.  V  ( ( V VDeg  E
) `  u )  =  m )
32 ornld 896 . . . . . . . . . . . . 13  |-  ( E. u  e.  V  ( ( V VDeg  E ) `
 u )  =  m  ->  ( (
( E. u  e.  V  ( ( V VDeg 
E ) `  u
)  =  m  -> 
( <. V ,  E >. RegUSGrph  m  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )  /\  -.  <. V ,  E >. RegUSGrph  m )  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )
3331, 32syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( t  e.  V  /\  m  e. 
NN0 )  /\  (
( V VDeg  E ) `  t )  =  m )  /\  ( V FriendGrph  E  /\  V  e.  Fin  /\  3  <  ( # `  V ) ) )  ->  ( ( ( E. u  e.  V  ( ( V VDeg  E
) `  u )  =  m  ->  ( <. V ,  E >. RegUSGrph  m  \/  E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) )  /\  -.  <. V ,  E >. RegUSGrph  m
)  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )
3433adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( t  e.  V  /\  m  e.  NN0 )  /\  (
( V VDeg  E ) `  t )  =  m )  /\  ( V FriendGrph  E  /\  V  e.  Fin  /\  3  <  ( # `  V ) ) )  /\  n  =  m )  ->  ( (
( E. u  e.  V  ( ( V VDeg 
E ) `  u
)  =  m  -> 
( <. V ,  E >. RegUSGrph  m  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )  /\  -.  <. V ,  E >. RegUSGrph  m )  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )
35 eqeq2 2482 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  (
( ( V VDeg  E
) `  u )  =  n  <->  ( ( V VDeg 
E ) `  u
)  =  m ) )
3635rexbidv 2973 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  ( E. u  e.  V  ( ( V VDeg  E
) `  u )  =  n  <->  E. u  e.  V  ( ( V VDeg  E
) `  u )  =  m ) )
37 breq2 4451 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  ( <. V ,  E >. RegUSGrph  n  <->  <. V ,  E >. RegUSGrph  m
) )
3837orbi1d 702 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E )  <->  ( <. V ,  E >. RegUSGrph  m  \/ 
E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) ) )
3936, 38imbi12d 320 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( E. u  e.  V  ( ( V VDeg 
E ) `  u
)  =  n  -> 
( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )  <-> 
( E. u  e.  V  ( ( V VDeg 
E ) `  u
)  =  m  -> 
( <. V ,  E >. RegUSGrph  m  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) ) ) )
4037notbid 294 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  ( -.  <. V ,  E >. RegUSGrph  n 
<->  -.  <. V ,  E >. RegUSGrph  m ) )
4139, 40anbi12d 710 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( ( E. u  e.  V  ( ( V VDeg  E ) `  u
)  =  n  -> 
( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )  /\  -.  <. V ,  E >. RegUSGrph  n )  <->  ( ( E. u  e.  V  ( ( V VDeg  E
) `  u )  =  m  ->  ( <. V ,  E >. RegUSGrph  m  \/  E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) )  /\  -.  <. V ,  E >. RegUSGrph  m
) ) )
4241imbi1d 317 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( ( ( E. u  e.  V  ( ( V VDeg  E ) `
 u )  =  n  ->  ( <. V ,  E >. RegUSGrph  n  \/ 
E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) )  /\  -.  <. V ,  E >. RegUSGrph  n
)  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E )  <->  ( (
( E. u  e.  V  ( ( V VDeg 
E ) `  u
)  =  m  -> 
( <. V ,  E >. RegUSGrph  m  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )  /\  -.  <. V ,  E >. RegUSGrph  m )  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) ) )
4342adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( ( t  e.  V  /\  m  e.  NN0 )  /\  (
( V VDeg  E ) `  t )  =  m )  /\  ( V FriendGrph  E  /\  V  e.  Fin  /\  3  <  ( # `  V ) ) )  /\  n  =  m )  ->  ( (
( ( E. u  e.  V  ( ( V VDeg  E ) `  u
)  =  n  -> 
( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )  /\  -.  <. V ,  E >. RegUSGrph  n )  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E )  <->  ( (
( E. u  e.  V  ( ( V VDeg 
E ) `  u
)  =  m  -> 
( <. V ,  E >. RegUSGrph  m  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )  /\  -.  <. V ,  E >. RegUSGrph  m )  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) ) )
4434, 43mpbird 232 . . . . . . . . . 10  |-  ( ( ( ( ( t  e.  V  /\  m  e.  NN0 )  /\  (
( V VDeg  E ) `  t )  =  m )  /\  ( V FriendGrph  E  /\  V  e.  Fin  /\  3  <  ( # `  V ) ) )  /\  n  =  m )  ->  ( (
( E. u  e.  V  ( ( V VDeg 
E ) `  u
)  =  n  -> 
( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )  /\  -.  <. V ,  E >. RegUSGrph  n )  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )
4526, 44rspcimdv 3215 . . . . . . . . 9  |-  ( ( ( ( t  e.  V  /\  m  e. 
NN0 )  /\  (
( V VDeg  E ) `  t )  =  m )  /\  ( V FriendGrph  E  /\  V  e.  Fin  /\  3  <  ( # `  V ) ) )  ->  ( A. n  e.  NN0  ( ( E. u  e.  V  ( ( V VDeg  E ) `
 u )  =  n  ->  ( <. V ,  E >. RegUSGrph  n  \/ 
E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) )  /\  -.  <. V ,  E >. RegUSGrph  n
)  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )
4645com12 31 . . . . . . . 8  |-  ( A. n  e.  NN0  ( ( E. u  e.  V  ( ( V VDeg  E
) `  u )  =  n  ->  ( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) )  /\  -.  <. V ,  E >. RegUSGrph  n
)  ->  ( (
( ( t  e.  V  /\  m  e. 
NN0 )  /\  (
( V VDeg  E ) `  t )  =  m )  /\  ( V FriendGrph  E  /\  V  e.  Fin  /\  3  <  ( # `  V ) ) )  ->  E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) )
4725, 46sylbir 213 . . . . . . 7  |-  ( ( A. n  e.  NN0  ( E. u  e.  V  ( ( V VDeg  E
) `  u )  =  n  ->  ( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) )  /\  A. n  e.  NN0  -.  <. V ,  E >. RegUSGrph  n )  ->  ( ( ( ( t  e.  V  /\  m  e.  NN0 )  /\  ( ( V VDeg 
E ) `  t
)  =  m )  /\  ( V FriendGrph  E  /\  V  e.  Fin  /\  3  <  ( # `  V
) ) )  ->  E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) )
4847expcom 435 . . . . . 6  |-  ( A. n  e.  NN0  -.  <. V ,  E >. RegUSGrph  n  -> 
( A. n  e. 
NN0  ( E. u  e.  V  ( ( V VDeg  E ) `  u
)  =  n  -> 
( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )  ->  ( ( ( ( t  e.  V  /\  m  e.  NN0 )  /\  ( ( V VDeg 
E ) `  t
)  =  m )  /\  ( V FriendGrph  E  /\  V  e.  Fin  /\  3  <  ( # `  V
) ) )  ->  E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) ) )
4948com13 80 . . . . 5  |-  ( ( ( ( t  e.  V  /\  m  e. 
NN0 )  /\  (
( V VDeg  E ) `  t )  =  m )  /\  ( V FriendGrph  E  /\  V  e.  Fin  /\  3  <  ( # `  V ) ) )  ->  ( A. n  e.  NN0  ( E. u  e.  V  ( ( V VDeg  E ) `  u
)  =  n  -> 
( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )  ->  ( A. n  e.  NN0  -.  <. V ,  E >. RegUSGrph  n  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) ) )
5049exp31 604 . . . 4  |-  ( ( t  e.  V  /\  m  e.  NN0 )  -> 
( ( ( V VDeg 
E ) `  t
)  =  m  -> 
( ( V FriendGrph  E  /\  V  e.  Fin  /\  3  <  ( # `  V
) )  ->  ( A. n  e.  NN0  ( E. u  e.  V  ( ( V VDeg  E
) `  u )  =  n  ->  ( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) )  ->  ( A. n  e.  NN0  -. 
<. V ,  E >. RegUSGrph  n  ->  E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) ) ) ) )
5150rexlimivv 2960 . . 3  |-  ( E. t  e.  V  E. m  e.  NN0  ( ( V VDeg  E ) `  t )  =  m  ->  ( ( V FriendGrph  E  /\  V  e.  Fin  /\  3  <  ( # `  V ) )  -> 
( A. n  e. 
NN0  ( E. u  e.  V  ( ( V VDeg  E ) `  u
)  =  n  -> 
( <. V ,  E >. RegUSGrph  n  \/  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )  ->  ( A. n  e.  NN0  -.  <. V ,  E >. RegUSGrph  n  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) ) ) )
5224, 51mpcom 36 . 2  |-  ( ( V FriendGrph  E  /\  V  e. 
Fin  /\  3  <  (
# `  V )
)  ->  ( A. n  e.  NN0  ( E. u  e.  V  ( ( V VDeg  E ) `
 u )  =  n  ->  ( <. V ,  E >. RegUSGrph  n  \/ 
E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) )  ->  ( A. n  e.  NN0  -. 
<. V ,  E >. RegUSGrph  n  ->  E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E ) ) )
532, 3, 52mp2d 45 1  |-  ( ( V FriendGrph  E  /\  V  e. 
Fin  /\  3  <  (
# `  V )
)  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    \ cdif 3473   (/)c0 3785   {csn 4027   {cpr 4029   <.cop 4033   class class class wbr 4447   ran crn 5000   ` cfv 5588  (class class class)co 6284   Fincfn 7516   RRcr 9491   0cc0 9492    < clt 9628   3c3 10586   NN0cn0 10795   #chash 12373   USGrph cusg 24034   VDeg cvdg 24597   RegUSGrph crusgra 24627   FriendGrph cfrgra 24692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-ot 4036  df-uni 4246  df-int 4283  df-iun 4327  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-ec 7313  df-qs 7317  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-xadd 11319  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-hash 12374  df-word 12508  df-lsw 12509  df-concat 12510  df-s1 12511  df-substr 12512  df-reps 12515  df-csh 12723  df-s2 12776  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-sum 13472  df-dvds 13848  df-gcd 14004  df-prm 14077  df-phi 14155  df-usgra 24037  df-nbgra 24124  df-wlk 24212  df-trail 24213  df-pth 24214  df-spth 24215  df-wlkon 24218  df-spthon 24221  df-wwlk 24383  df-wwlkn 24384  df-clwwlk 24455  df-clwwlkn 24456  df-2wlkonot 24562  df-2spthonot 24564  df-2spthsot 24565  df-vdgr 24598  df-rgra 24628  df-rusgra 24629  df-frgra 24693
This theorem is referenced by:  friendship  24827
  Copyright terms: Public domain W3C validator