MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrawopreglem4 Structured version   Unicode version

Theorem frgrawopreglem4 24879
Description: Lemma 4 for frgrawopreg 24881. In a friendship graph each vertex with degree K is connected with a vertex with degree other than K. This corresponds to the observation in the proof of [Huneke] p. 2: "By the first claim, every vertex in A is adjacent to every vertex in B." (Contributed by Alexander van der Vekens, 30-Dec-2017.)
Hypotheses
Ref Expression
frgrawopreg.a  |-  A  =  { x  e.  V  |  ( ( V VDeg 
E ) `  x
)  =  K }
frgrawopreg.b  |-  B  =  ( V  \  A
)
Assertion
Ref Expression
frgrawopreglem4  |-  ( V FriendGrph  E  ->  A. a  e.  A  A. b  e.  B  { a ,  b }  e.  ran  E
)
Distinct variable groups:    x, A    x, E    x, K    x, V    A, b    x, a, b, E    V, a,
b
Allowed substitution hints:    A( a)    B( x, a, b)    K( a, b)

Proof of Theorem frgrawopreglem4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 frgrawopreg.a . . . 4  |-  A  =  { x  e.  V  |  ( ( V VDeg 
E ) `  x
)  =  K }
2 frgrawopreg.b . . . 4  |-  B  =  ( V  \  A
)
31, 2frgrawopreglem3 24878 . . 3  |-  ( ( a  e.  A  /\  b  e.  B )  ->  ( ( V VDeg  E
) `  a )  =/=  ( ( V VDeg  E
) `  b )
)
4 frgrancvvdgeq 24875 . . . 4  |-  ( V FriendGrph  E  ->  A. x  e.  V  A. y  e.  ( V  \  { x }
) ( y  e/  ( <. V ,  E >. Neighbors  x )  ->  (
( V VDeg  E ) `  x )  =  ( ( V VDeg  E ) `
 y ) ) )
5 elrabi 3263 . . . . . . . . 9  |-  ( a  e.  { x  e.  V  |  ( ( V VDeg  E ) `  x )  =  K }  ->  a  e.  V )
65, 1eleq2s 2575 . . . . . . . 8  |-  ( a  e.  A  ->  a  e.  V )
7 sneq 4043 . . . . . . . . . . 11  |-  ( x  =  a  ->  { x }  =  { a } )
87difeq2d 3627 . . . . . . . . . 10  |-  ( x  =  a  ->  ( V  \  { x }
)  =  ( V 
\  { a } ) )
9 oveq2 6303 . . . . . . . . . . . 12  |-  ( x  =  a  ->  ( <. V ,  E >. Neighbors  x
)  =  ( <. V ,  E >. Neighbors  a
) )
10 neleq2 2807 . . . . . . . . . . . 12  |-  ( (
<. V ,  E >. Neighbors  x
)  =  ( <. V ,  E >. Neighbors  a
)  ->  ( y  e/  ( <. V ,  E >. Neighbors  x )  <->  y  e/  ( <. V ,  E >. Neighbors 
a ) ) )
119, 10syl 16 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
y  e/  ( <. V ,  E >. Neighbors  x )  <-> 
y  e/  ( <. V ,  E >. Neighbors  a ) ) )
12 fveq2 5872 . . . . . . . . . . . 12  |-  ( x  =  a  ->  (
( V VDeg  E ) `  x )  =  ( ( V VDeg  E ) `
 a ) )
1312eqeq1d 2469 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
( ( V VDeg  E
) `  x )  =  ( ( V VDeg 
E ) `  y
)  <->  ( ( V VDeg 
E ) `  a
)  =  ( ( V VDeg  E ) `  y ) ) )
1411, 13imbi12d 320 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( y  e/  ( <. V ,  E >. Neighbors  x
)  ->  ( ( V VDeg  E ) `  x
)  =  ( ( V VDeg  E ) `  y ) )  <->  ( y  e/  ( <. V ,  E >. Neighbors 
a )  ->  (
( V VDeg  E ) `  a )  =  ( ( V VDeg  E ) `
 y ) ) ) )
158, 14raleqbidv 3077 . . . . . . . . 9  |-  ( x  =  a  ->  ( A. y  e.  ( V  \  { x }
) ( y  e/  ( <. V ,  E >. Neighbors  x )  ->  (
( V VDeg  E ) `  x )  =  ( ( V VDeg  E ) `
 y ) )  <->  A. y  e.  ( V  \  { a } ) ( y  e/  ( <. V ,  E >. Neighbors 
a )  ->  (
( V VDeg  E ) `  a )  =  ( ( V VDeg  E ) `
 y ) ) ) )
1615rspcv 3215 . . . . . . . 8  |-  ( a  e.  V  ->  ( A. x  e.  V  A. y  e.  ( V  \  { x }
) ( y  e/  ( <. V ,  E >. Neighbors  x )  ->  (
( V VDeg  E ) `  x )  =  ( ( V VDeg  E ) `
 y ) )  ->  A. y  e.  ( V  \  { a } ) ( y  e/  ( <. V ,  E >. Neighbors  a )  ->  (
( V VDeg  E ) `  a )  =  ( ( V VDeg  E ) `
 y ) ) ) )
176, 16syl 16 . . . . . . 7  |-  ( a  e.  A  ->  ( A. x  e.  V  A. y  e.  ( V  \  { x }
) ( y  e/  ( <. V ,  E >. Neighbors  x )  ->  (
( V VDeg  E ) `  x )  =  ( ( V VDeg  E ) `
 y ) )  ->  A. y  e.  ( V  \  { a } ) ( y  e/  ( <. V ,  E >. Neighbors  a )  ->  (
( V VDeg  E ) `  a )  =  ( ( V VDeg  E ) `
 y ) ) ) )
1817adantr 465 . . . . . 6  |-  ( ( a  e.  A  /\  b  e.  B )  ->  ( A. x  e.  V  A. y  e.  ( V  \  {
x } ) ( y  e/  ( <. V ,  E >. Neighbors  x
)  ->  ( ( V VDeg  E ) `  x
)  =  ( ( V VDeg  E ) `  y ) )  ->  A. y  e.  ( V  \  { a } ) ( y  e/  ( <. V ,  E >. Neighbors 
a )  ->  (
( V VDeg  E ) `  a )  =  ( ( V VDeg  E ) `
 y ) ) ) )
192eleq2i 2545 . . . . . . . . . 10  |-  ( b  e.  B  <->  b  e.  ( V  \  A ) )
20 eldif 3491 . . . . . . . . . 10  |-  ( b  e.  ( V  \  A )  <->  ( b  e.  V  /\  -.  b  e.  A ) )
2119, 20bitri 249 . . . . . . . . 9  |-  ( b  e.  B  <->  ( b  e.  V  /\  -.  b  e.  A ) )
22 simpll 753 . . . . . . . . . . 11  |-  ( ( ( b  e.  V  /\  -.  b  e.  A
)  /\  a  e.  A )  ->  b  e.  V )
23 eleq1a 2550 . . . . . . . . . . . . . . 15  |-  ( a  e.  A  ->  (
b  =  a  -> 
b  e.  A ) )
2423con3rr3 136 . . . . . . . . . . . . . 14  |-  ( -.  b  e.  A  -> 
( a  e.  A  ->  -.  b  =  a ) )
2524adantl 466 . . . . . . . . . . . . 13  |-  ( ( b  e.  V  /\  -.  b  e.  A
)  ->  ( a  e.  A  ->  -.  b  =  a ) )
2625imp 429 . . . . . . . . . . . 12  |-  ( ( ( b  e.  V  /\  -.  b  e.  A
)  /\  a  e.  A )  ->  -.  b  =  a )
27 elsn 4047 . . . . . . . . . . . 12  |-  ( b  e.  { a }  <-> 
b  =  a )
2826, 27sylnibr 305 . . . . . . . . . . 11  |-  ( ( ( b  e.  V  /\  -.  b  e.  A
)  /\  a  e.  A )  ->  -.  b  e.  { a } )
2922, 28eldifd 3492 . . . . . . . . . 10  |-  ( ( ( b  e.  V  /\  -.  b  e.  A
)  /\  a  e.  A )  ->  b  e.  ( V  \  {
a } ) )
3029ex 434 . . . . . . . . 9  |-  ( ( b  e.  V  /\  -.  b  e.  A
)  ->  ( a  e.  A  ->  b  e.  ( V  \  {
a } ) ) )
3121, 30sylbi 195 . . . . . . . 8  |-  ( b  e.  B  ->  (
a  e.  A  -> 
b  e.  ( V 
\  { a } ) ) )
3231impcom 430 . . . . . . 7  |-  ( ( a  e.  A  /\  b  e.  B )  ->  b  e.  ( V 
\  { a } ) )
33 neleq1 2805 . . . . . . . . 9  |-  ( y  =  b  ->  (
y  e/  ( <. V ,  E >. Neighbors  a )  <-> 
b  e/  ( <. V ,  E >. Neighbors  a ) ) )
34 fveq2 5872 . . . . . . . . . 10  |-  ( y  =  b  ->  (
( V VDeg  E ) `  y )  =  ( ( V VDeg  E ) `
 b ) )
3534eqeq2d 2481 . . . . . . . . 9  |-  ( y  =  b  ->  (
( ( V VDeg  E
) `  a )  =  ( ( V VDeg 
E ) `  y
)  <->  ( ( V VDeg 
E ) `  a
)  =  ( ( V VDeg  E ) `  b ) ) )
3633, 35imbi12d 320 . . . . . . . 8  |-  ( y  =  b  ->  (
( y  e/  ( <. V ,  E >. Neighbors  a
)  ->  ( ( V VDeg  E ) `  a
)  =  ( ( V VDeg  E ) `  y ) )  <->  ( b  e/  ( <. V ,  E >. Neighbors 
a )  ->  (
( V VDeg  E ) `  a )  =  ( ( V VDeg  E ) `
 b ) ) ) )
3736rspcv 3215 . . . . . . 7  |-  ( b  e.  ( V  \  { a } )  ->  ( A. y  e.  ( V  \  {
a } ) ( y  e/  ( <. V ,  E >. Neighbors  a
)  ->  ( ( V VDeg  E ) `  a
)  =  ( ( V VDeg  E ) `  y ) )  -> 
( b  e/  ( <. V ,  E >. Neighbors  a
)  ->  ( ( V VDeg  E ) `  a
)  =  ( ( V VDeg  E ) `  b ) ) ) )
3832, 37syl 16 . . . . . 6  |-  ( ( a  e.  A  /\  b  e.  B )  ->  ( A. y  e.  ( V  \  {
a } ) ( y  e/  ( <. V ,  E >. Neighbors  a
)  ->  ( ( V VDeg  E ) `  a
)  =  ( ( V VDeg  E ) `  y ) )  -> 
( b  e/  ( <. V ,  E >. Neighbors  a
)  ->  ( ( V VDeg  E ) `  a
)  =  ( ( V VDeg  E ) `  b ) ) ) )
39 nnel 2812 . . . . . . . . 9  |-  ( -.  b  e/  ( <. V ,  E >. Neighbors  a
)  <->  b  e.  (
<. V ,  E >. Neighbors  a
) )
40 frisusgra 24824 . . . . . . . . . . . . . . 15  |-  ( V FriendGrph  E  ->  V USGrph  E )
41 nbgraeledg 24262 . . . . . . . . . . . . . . 15  |-  ( V USGrph  E  ->  ( b  e.  ( <. V ,  E >. Neighbors 
a )  <->  { b ,  a }  e.  ran  E ) )
4240, 41syl 16 . . . . . . . . . . . . . 14  |-  ( V FriendGrph  E  ->  ( b  e.  ( <. V ,  E >. Neighbors 
a )  <->  { b ,  a }  e.  ran  E ) )
43 prcom 4111 . . . . . . . . . . . . . . 15  |-  { b ,  a }  =  { a ,  b }
4443eleq1i 2544 . . . . . . . . . . . . . 14  |-  ( { b ,  a }  e.  ran  E  <->  { a ,  b }  e.  ran  E )
4542, 44syl6bb 261 . . . . . . . . . . . . 13  |-  ( V FriendGrph  E  ->  ( b  e.  ( <. V ,  E >. Neighbors 
a )  <->  { a ,  b }  e.  ran  E ) )
4645biimpa 484 . . . . . . . . . . . 12  |-  ( ( V FriendGrph  E  /\  b  e.  ( <. V ,  E >. Neighbors 
a ) )  ->  { a ,  b }  e.  ran  E
)
4746a1d 25 . . . . . . . . . . 11  |-  ( ( V FriendGrph  E  /\  b  e.  ( <. V ,  E >. Neighbors 
a ) )  -> 
( ( ( V VDeg 
E ) `  a
)  =/=  ( ( V VDeg  E ) `  b )  ->  { a ,  b }  e.  ran  E ) )
4847expcom 435 . . . . . . . . . 10  |-  ( b  e.  ( <. V ,  E >. Neighbors  a )  ->  ( V FriendGrph  E  ->  ( (
( V VDeg  E ) `  a )  =/=  (
( V VDeg  E ) `  b )  ->  { a ,  b }  e.  ran  E ) ) )
4948a1d 25 . . . . . . . . 9  |-  ( b  e.  ( <. V ,  E >. Neighbors  a )  ->  (
( a  e.  A  /\  b  e.  B
)  ->  ( V FriendGrph  E  ->  ( ( ( V VDeg  E ) `  a )  =/=  (
( V VDeg  E ) `  b )  ->  { a ,  b }  e.  ran  E ) ) ) )
5039, 49sylbi 195 . . . . . . . 8  |-  ( -.  b  e/  ( <. V ,  E >. Neighbors  a
)  ->  ( (
a  e.  A  /\  b  e.  B )  ->  ( V FriendGrph  E  ->  ( ( ( V VDeg  E
) `  a )  =/=  ( ( V VDeg  E
) `  b )  ->  { a ,  b }  e.  ran  E
) ) ) )
51 eqneqall 2674 . . . . . . . . . 10  |-  ( ( ( V VDeg  E ) `
 a )  =  ( ( V VDeg  E
) `  b )  ->  ( ( ( V VDeg 
E ) `  a
)  =/=  ( ( V VDeg  E ) `  b )  ->  { a ,  b }  e.  ran  E ) )
5251a1d 25 . . . . . . . . 9  |-  ( ( ( V VDeg  E ) `
 a )  =  ( ( V VDeg  E
) `  b )  ->  ( V FriendGrph  E  ->  ( ( ( V VDeg  E
) `  a )  =/=  ( ( V VDeg  E
) `  b )  ->  { a ,  b }  e.  ran  E
) ) )
5352a1d 25 . . . . . . . 8  |-  ( ( ( V VDeg  E ) `
 a )  =  ( ( V VDeg  E
) `  b )  ->  ( ( a  e.  A  /\  b  e.  B )  ->  ( V FriendGrph  E  ->  ( (
( V VDeg  E ) `  a )  =/=  (
( V VDeg  E ) `  b )  ->  { a ,  b }  e.  ran  E ) ) ) )
5450, 53ja 161 . . . . . . 7  |-  ( ( b  e/  ( <. V ,  E >. Neighbors  a
)  ->  ( ( V VDeg  E ) `  a
)  =  ( ( V VDeg  E ) `  b ) )  -> 
( ( a  e.  A  /\  b  e.  B )  ->  ( V FriendGrph  E  ->  ( (
( V VDeg  E ) `  a )  =/=  (
( V VDeg  E ) `  b )  ->  { a ,  b }  e.  ran  E ) ) ) )
5554com12 31 . . . . . 6  |-  ( ( a  e.  A  /\  b  e.  B )  ->  ( ( b  e/  ( <. V ,  E >. Neighbors 
a )  ->  (
( V VDeg  E ) `  a )  =  ( ( V VDeg  E ) `
 b ) )  ->  ( V FriendGrph  E  -> 
( ( ( V VDeg 
E ) `  a
)  =/=  ( ( V VDeg  E ) `  b )  ->  { a ,  b }  e.  ran  E ) ) ) )
5618, 38, 553syld 55 . . . . 5  |-  ( ( a  e.  A  /\  b  e.  B )  ->  ( A. x  e.  V  A. y  e.  ( V  \  {
x } ) ( y  e/  ( <. V ,  E >. Neighbors  x
)  ->  ( ( V VDeg  E ) `  x
)  =  ( ( V VDeg  E ) `  y ) )  -> 
( V FriendGrph  E  ->  (
( ( V VDeg  E
) `  a )  =/=  ( ( V VDeg  E
) `  b )  ->  { a ,  b }  e.  ran  E
) ) ) )
5756com3l 81 . . . 4  |-  ( A. x  e.  V  A. y  e.  ( V  \  { x } ) ( y  e/  ( <. V ,  E >. Neighbors  x
)  ->  ( ( V VDeg  E ) `  x
)  =  ( ( V VDeg  E ) `  y ) )  -> 
( V FriendGrph  E  ->  (
( a  e.  A  /\  b  e.  B
)  ->  ( (
( V VDeg  E ) `  a )  =/=  (
( V VDeg  E ) `  b )  ->  { a ,  b }  e.  ran  E ) ) ) )
584, 57mpcom 36 . . 3  |-  ( V FriendGrph  E  ->  ( ( a  e.  A  /\  b  e.  B )  ->  (
( ( V VDeg  E
) `  a )  =/=  ( ( V VDeg  E
) `  b )  ->  { a ,  b }  e.  ran  E
) ) )
593, 58mpdi 42 . 2  |-  ( V FriendGrph  E  ->  ( ( a  e.  A  /\  b  e.  B )  ->  { a ,  b }  e.  ran  E ) )
6059ralrimivv 2887 1  |-  ( V FriendGrph  E  ->  A. a  e.  A  A. b  e.  B  { a ,  b }  e.  ran  E
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662    e/ wnel 2663   A.wral 2817   {crab 2821    \ cdif 3478   {csn 4033   {cpr 4035   <.cop 4039   class class class wbr 4453   ran crn 5006   ` cfv 5594  (class class class)co 6295   USGrph cusg 24162   Neighbors cnbgra 24249   VDeg cvdg 24725   FriendGrph cfrgra 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-n0 10808  df-z 10877  df-uz 11095  df-xadd 11331  df-fz 11685  df-hash 12386  df-usgra 24165  df-nbgra 24252  df-vdgr 24726  df-frgra 24821
This theorem is referenced by:  frgrawopreglem5  24880  frgrawopreg1  24882  frgrawopreg2  24883
  Copyright terms: Public domain W3C validator