Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frgraunss Structured version   Unicode version

Theorem frgraunss 30433
Description: Any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017.)
Assertion
Ref Expression
frgraunss  |-  ( V FriendGrph  E  ->  ( ( A  e.  V  /\  C  e.  V  /\  A  =/= 
C )  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  ran  E ) )
Distinct variable groups:    A, b    C, b    E, b    V, b

Proof of Theorem frgraunss
Dummy variables  a 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frisusgrapr 30429 . 2  |-  ( V FriendGrph  E  ->  ( V USGrph  E  /\  A. a  e.  V  A. c  e.  ( V  \  { a } ) E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_  ran  E ) )
2 sneq 3875 . . . . . . . . . . 11  |-  ( a  =  A  ->  { a }  =  { A } )
32difeq2d 3462 . . . . . . . . . 10  |-  ( a  =  A  ->  ( V  \  { a } )  =  ( V 
\  { A }
) )
4 preq2 3943 . . . . . . . . . . . . 13  |-  ( a  =  A  ->  { b ,  a }  =  { b ,  A } )
54preq1d 3948 . . . . . . . . . . . 12  |-  ( a  =  A  ->  { {
b ,  a } ,  { b ,  c } }  =  { { b ,  A } ,  { b ,  c } }
)
65sseq1d 3371 . . . . . . . . . . 11  |-  ( a  =  A  ->  ( { { b ,  a } ,  { b ,  c } }  C_ 
ran  E  <->  { { b ,  A } ,  {
b ,  c } }  C_  ran  E ) )
76reubidv 2895 . . . . . . . . . 10  |-  ( a  =  A  ->  ( E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_ 
ran  E  <->  E! b  e.  V  { { b ,  A } ,  { b ,  c } }  C_ 
ran  E ) )
83, 7raleqbidv 2921 . . . . . . . . 9  |-  ( a  =  A  ->  ( A. c  e.  ( V  \  { a } ) E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_  ran  E  <->  A. c  e.  ( V  \  { A }
) E! b  e.  V  { { b ,  A } ,  { b ,  c } }  C_  ran  E ) )
98rspcva 3060 . . . . . . . 8  |-  ( ( A  e.  V  /\  A. a  e.  V  A. c  e.  ( V  \  { a } ) E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_ 
ran  E )  ->  A. c  e.  ( V  \  { A }
) E! b  e.  V  { { b ,  A } ,  { b ,  c } }  C_  ran  E )
10 elsni 3890 . . . . . . . . . . . . . . 15  |-  ( C  e.  { A }  ->  C  =  A )
1110eqcomd 2438 . . . . . . . . . . . . . 14  |-  ( C  e.  { A }  ->  A  =  C )
1211necon3ai 2641 . . . . . . . . . . . . 13  |-  ( A  =/=  C  ->  -.  C  e.  { A } )
1312anim2i 564 . . . . . . . . . . . 12  |-  ( ( C  e.  V  /\  A  =/=  C )  -> 
( C  e.  V  /\  -.  C  e.  { A } ) )
14 eldif 3326 . . . . . . . . . . . 12  |-  ( C  e.  ( V  \  { A } )  <->  ( C  e.  V  /\  -.  C  e.  { A } ) )
1513, 14sylibr 212 . . . . . . . . . . 11  |-  ( ( C  e.  V  /\  A  =/=  C )  ->  C  e.  ( V  \  { A } ) )
16 preq2 3943 . . . . . . . . . . . . . . . . 17  |-  ( c  =  C  ->  { b ,  c }  =  { b ,  C } )
1716preq2d 3949 . . . . . . . . . . . . . . . 16  |-  ( c  =  C  ->  { {
b ,  A } ,  { b ,  c } }  =  { { b ,  A } ,  { b ,  C } } )
1817sseq1d 3371 . . . . . . . . . . . . . . 15  |-  ( c  =  C  ->  ( { { b ,  A } ,  { b ,  c } }  C_ 
ran  E  <->  { { b ,  A } ,  {
b ,  C } }  C_  ran  E ) )
1918reubidv 2895 . . . . . . . . . . . . . 14  |-  ( c  =  C  ->  ( E! b  e.  V  { { b ,  A } ,  { b ,  c } }  C_ 
ran  E  <->  E! b  e.  V  { { b ,  A } ,  { b ,  C } }  C_  ran  E ) )
2019rspcva 3060 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( V 
\  { A }
)  /\  A. c  e.  ( V  \  { A } ) E! b  e.  V  { {
b ,  A } ,  { b ,  c } }  C_  ran  E )  ->  E! b  e.  V  { { b ,  A } ,  { b ,  C } }  C_  ran  E
)
21 prcom 3941 . . . . . . . . . . . . . . . 16  |-  { b ,  A }  =  { A ,  b }
2221preq1i 3945 . . . . . . . . . . . . . . 15  |-  { {
b ,  A } ,  { b ,  C } }  =  { { A ,  b } ,  { b ,  C } }
2322sseq1i 3368 . . . . . . . . . . . . . 14  |-  ( { { b ,  A } ,  { b ,  C } }  C_  ran  E  <->  { { A , 
b } ,  {
b ,  C } }  C_  ran  E )
2423reubii 2897 . . . . . . . . . . . . 13  |-  ( E! b  e.  V  { { b ,  A } ,  { b ,  C } }  C_  ran  E  <->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_ 
ran  E )
2520, 24sylib 196 . . . . . . . . . . . 12  |-  ( ( C  e.  ( V 
\  { A }
)  /\  A. c  e.  ( V  \  { A } ) E! b  e.  V  { {
b ,  A } ,  { b ,  c } }  C_  ran  E )  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  ran  E
)
2625ex 434 . . . . . . . . . . 11  |-  ( C  e.  ( V  \  { A } )  -> 
( A. c  e.  ( V  \  { A } ) E! b  e.  V  { {
b ,  A } ,  { b ,  c } }  C_  ran  E  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  ran  E
) )
2715, 26syl 16 . . . . . . . . . 10  |-  ( ( C  e.  V  /\  A  =/=  C )  -> 
( A. c  e.  ( V  \  { A } ) E! b  e.  V  { {
b ,  A } ,  { b ,  c } }  C_  ran  E  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  ran  E
) )
2827ex 434 . . . . . . . . 9  |-  ( C  e.  V  ->  ( A  =/=  C  ->  ( A. c  e.  ( V  \  { A }
) E! b  e.  V  { { b ,  A } ,  { b ,  c } }  C_  ran  E  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  ran  E
) ) )
2928com13 80 . . . . . . . 8  |-  ( A. c  e.  ( V  \  { A } ) E! b  e.  V  { { b ,  A } ,  { b ,  c } }  C_ 
ran  E  ->  ( A  =/=  C  ->  ( C  e.  V  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  ran  E ) ) )
309, 29syl 16 . . . . . . 7  |-  ( ( A  e.  V  /\  A. a  e.  V  A. c  e.  ( V  \  { a } ) E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_ 
ran  E )  -> 
( A  =/=  C  ->  ( C  e.  V  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_ 
ran  E ) ) )
3130ex 434 . . . . . 6  |-  ( A  e.  V  ->  ( A. a  e.  V  A. c  e.  ( V  \  { a } ) E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_  ran  E  ->  ( A  =/= 
C  ->  ( C  e.  V  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  ran  E
) ) ) )
3231com24 87 . . . . 5  |-  ( A  e.  V  ->  ( C  e.  V  ->  ( A  =/=  C  -> 
( A. a  e.  V  A. c  e.  ( V  \  {
a } ) E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_ 
ran  E  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  ran  E
) ) ) )
33323imp 1174 . . . 4  |-  ( ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  -> 
( A. a  e.  V  A. c  e.  ( V  \  {
a } ) E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_ 
ran  E  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  ran  E
) )
3433com12 31 . . 3  |-  ( A. a  e.  V  A. c  e.  ( V  \  { a } ) E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_ 
ran  E  ->  ( ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_ 
ran  E ) )
3534adantl 463 . 2  |-  ( ( V USGrph  E  /\  A. a  e.  V  A. c  e.  ( V  \  {
a } ) E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_ 
ran  E )  -> 
( ( A  e.  V  /\  C  e.  V  /\  A  =/= 
C )  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  ran  E ) )
361, 35syl 16 1  |-  ( V FriendGrph  E  ->  ( ( A  e.  V  /\  C  e.  V  /\  A  =/= 
C )  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  ran  E ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755    =/= wne 2596   A.wral 2705   E!wreu 2707    \ cdif 3313    C_ wss 3316   {csn 3865   {cpr 3867   class class class wbr 4280   ran crn 4828   USGrph cusg 23087   FriendGrph cfrgra 30426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pr 4519
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-sn 3866  df-pr 3868  df-op 3872  df-br 4281  df-opab 4339  df-xp 4833  df-rel 4834  df-cnv 4835  df-dm 4837  df-rn 4838  df-frgra 30427
This theorem is referenced by:  frgraun  30434  4cyclusnfrgra  30457  frgrancvvdeqlem3  30471
  Copyright terms: Public domain W3C validator