MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgraregord013 Structured version   Unicode version

Theorem frgraregord013 25844
Description: If a finite friendship graph is k-regular, then it must have order 0, 1 or 3. (Contributed by Alexander van der Vekens, 9-Oct-2018.)
Assertion
Ref Expression
frgraregord013  |-  ( ( V FriendGrph  E  /\  V  e. 
Fin  /\  <. V ,  E >. RegUSGrph  K )  ->  (
( # `  V )  =  0  \/  ( # `
 V )  =  1  \/  ( # `  V )  =  3 ) )

Proof of Theorem frgraregord013
Dummy variables  a 
b  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashcl 12544 . . . 4  |-  ( V  e.  Fin  ->  ( # `
 V )  e. 
NN0 )
2 ax-1 6 . . . . . 6  |-  ( ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 )  ->  ( ( ( ( # `  V
)  e.  NN0  /\  V  e.  Fin  /\  V FriendGrph  E )  /\  <. V ,  E >. RegUSGrph  K )  ->  (
( # `  V )  =  0  \/  ( # `
 V )  =  1  \/  ( # `  V )  =  3 ) ) )
3 3ioran 1000 . . . . . . 7  |-  ( -.  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 )  <-> 
( -.  ( # `  V )  =  0  /\  -.  ( # `  V )  =  1  /\  -.  ( # `  V )  =  3 ) )
4 df-ne 2616 . . . . . . . . . . . . . 14  |-  ( (
# `  V )  =/=  0  <->  -.  ( # `  V
)  =  0 )
5 hasheq0 12550 . . . . . . . . . . . . . . . . . . 19  |-  ( V  e.  Fin  ->  (
( # `  V )  =  0  <->  V  =  (/) ) )
65necon3bid 2678 . . . . . . . . . . . . . . . . . 18  |-  ( V  e.  Fin  ->  (
( # `  V )  =/=  0  <->  V  =/=  (/) ) )
76biimpa 486 . . . . . . . . . . . . . . . . 17  |-  ( ( V  e.  Fin  /\  ( # `  V )  =/=  0 )  ->  V  =/=  (/) )
8 elnnne0 10890 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
# `  V )  e.  NN  <->  ( ( # `  V )  e.  NN0  /\  ( # `  V
)  =/=  0 ) )
9 df-ne 2616 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
# `  V )  =/=  1  <->  -.  ( # `  V
)  =  1 )
10 eluz2b3 11239 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
# `  V )  e.  ( ZZ>= `  2 )  <->  ( ( # `  V
)  e.  NN  /\  ( # `  V )  =/=  1 ) )
11 hash2prde 12635 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( V  e.  Fin  /\  ( # `  V )  =  2 )  ->  E. a E. b ( a  =/=  b  /\  V  =  { a ,  b } ) )
12 breq1 4426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( V  =  { a ,  b }  ->  ( V FriendGrph  E  <->  { a ,  b } FriendGrph  E ) )
1312adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( a  =/=  b  /\  V  =  { a ,  b } )  ->  ( V FriendGrph  E  <->  { a ,  b } FriendGrph  E ) )
14 vex 3083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  a  e. 
_V
15 vex 3083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  b  e. 
_V
1614, 15pm3.2i 456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( a  e.  _V  /\  b  e.  _V )
1716a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( V  =  { a ,  b }  ->  (
a  e.  _V  /\  b  e.  _V )
)
1817anim1i 570 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( ( V  =  { a ,  b }  /\  a  =/=  b )  -> 
( ( a  e. 
_V  /\  b  e.  _V )  /\  a  =/=  b ) )
1918ancoms 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( a  =/=  b  /\  V  =  { a ,  b } )  ->  ( ( a  e.  _V  /\  b  e.  _V )  /\  a  =/=  b ) )
20 frgra2v 25725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( ( a  e.  _V  /\  b  e.  _V )  /\  a  =/=  b
)  ->  -.  { a ,  b } FriendGrph  E )
2119, 20syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( a  =/=  b  /\  V  =  { a ,  b } )  ->  -.  { a ,  b } FriendGrph  E )
2221pm2.21d 109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( a  =/=  b  /\  V  =  { a ,  b } )  ->  ( { a ,  b } FriendGrph  E  -> 
( V  =/=  (/)  ->  ( -.  ( # `  V
)  =  3  -> 
( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V )  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
2313, 22sylbid 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( a  =/=  b  /\  V  =  { a ,  b } )  ->  ( V FriendGrph  E  -> 
( V  =/=  (/)  ->  ( -.  ( # `  V
)  =  3  -> 
( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V )  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
2423com23 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( a  =/=  b  /\  V  =  { a ,  b } )  ->  ( V  =/=  (/)  ->  ( V FriendGrph  E  -> 
( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
2524exlimivv 1771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( E. a E. b ( a  =/=  b  /\  V  =  { a ,  b } )  ->  ( V  =/=  (/)  ->  ( V FriendGrph  E  -> 
( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
2611, 25syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( V  e.  Fin  /\  ( # `  V )  =  2 )  -> 
( V  =/=  (/)  ->  ( V FriendGrph  E  ->  ( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
2726ex 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( V  e.  Fin  ->  (
( # `  V )  =  2  ->  ( V  =/=  (/)  ->  ( V FriendGrph  E  ->  ( -.  ( # `
 V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) )
2827com23 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( V  e.  Fin  ->  ( V  =/=  (/)  ->  ( ( # `
 V )  =  2  ->  ( V FriendGrph  E  ->  ( -.  ( # `
 V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) )
2928com14 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( V FriendGrph  E  ->  ( V  =/=  (/)  ->  ( ( # `  V )  =  2  ->  ( V  e. 
Fin  ->  ( -.  ( # `
 V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) )
3029a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
# `  V )  e.  ( ZZ>= `  2 )  ->  ( V FriendGrph  E  ->  ( V  =/=  (/)  ->  (
( # `  V )  =  2  ->  ( V  e.  Fin  ->  ( -.  ( # `  V
)  =  3  -> 
( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V )  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
31303imp 1199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( # `  V
)  e.  ( ZZ>= ` 
2 )  /\  V FriendGrph  E  /\  V  =/=  (/) )  -> 
( ( # `  V
)  =  2  -> 
( V  e.  Fin  ->  ( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
3231com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
# `  V )  =  2  ->  (
( ( # `  V
)  e.  ( ZZ>= ` 
2 )  /\  V FriendGrph  E  /\  V  =/=  (/) )  -> 
( V  e.  Fin  ->  ( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
33 rusgraprop 25655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( <. V ,  E >. RegUSGrph  K  ->  ( V USGrph  E  /\  K  e.  NN0  /\  A. v  e.  V  (
( V VDeg  E ) `  v )  =  K ) )
34 eluz2 11172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  |-  ( (
# `  V )  e.  ( ZZ>= `  2 )  <->  ( 2  e.  ZZ  /\  ( # `  V )  e.  ZZ  /\  2  <_  ( # `  V
) ) )
35 1red 9665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  |-  ( ( ( # `  V
)  e.  ZZ  /\  2  <_  ( # `  V
) )  ->  1  e.  RR )
36 2re 10686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  |-  2  e.  RR
3736a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  |-  ( ( ( # `  V
)  e.  ZZ  /\  2  <_  ( # `  V
) )  ->  2  e.  RR )
38 zre 10948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  |-  ( (
# `  V )  e.  ZZ  ->  ( # `  V
)  e.  RR )
3938adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  |-  ( ( ( # `  V
)  e.  ZZ  /\  2  <_  ( # `  V
) )  ->  ( # `
 V )  e.  RR )
40 1lt2 10783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  |-  1  <  2
4140a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  |-  ( ( ( # `  V
)  e.  ZZ  /\  2  <_  ( # `  V
) )  ->  1  <  2 )
42 simpr 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  |-  ( ( ( # `  V
)  e.  ZZ  /\  2  <_  ( # `  V
) )  ->  2  <_  ( # `  V
) )
4335, 37, 39, 41, 42ltletrd 9802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  |-  ( ( ( # `  V
)  e.  ZZ  /\  2  <_  ( # `  V
) )  ->  1  <  ( # `  V
) )
44433adant1 1023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  |-  ( ( 2  e.  ZZ  /\  ( # `  V )  e.  ZZ  /\  2  <_  ( # `  V
) )  ->  1  <  ( # `  V
) )
4534, 44sylbi 198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  |-  ( (
# `  V )  e.  ( ZZ>= `  2 )  ->  1  <  ( # `  V ) )
4645anim2i 571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  |-  ( ( V FriendGrph  E  /\  ( # `
 V )  e.  ( ZZ>= `  2 )
)  ->  ( V FriendGrph  E  /\  1  <  ( # `
 V ) ) )
4746ancoms 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  |-  ( ( ( # `  V
)  e.  ( ZZ>= ` 
2 )  /\  V FriendGrph  E )  ->  ( V FriendGrph  E  /\  1  <  ( # `
 V ) ) )
48 vdgn0frgrav2 25750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  |-  ( ( V FriendGrph  E  /\  v  e.  V )  ->  (
1  <  ( # `  V
)  ->  ( ( V VDeg  E ) `  v
)  =/=  0 ) )
4948impancom 441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  |-  ( ( V FriendGrph  E  /\  1  <  ( # `  V
) )  ->  (
v  e.  V  -> 
( ( V VDeg  E
) `  v )  =/=  0 ) )
5049ralrimiv 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  |-  ( ( V FriendGrph  E  /\  1  <  ( # `  V
) )  ->  A. v  e.  V  ( ( V VDeg  E ) `  v
)  =/=  0 )
51 eqeq2 2437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  |-  ( K  =  0  ->  (
( ( V VDeg  E
) `  v )  =  K  <->  ( ( V VDeg 
E ) `  v
)  =  0 ) )
5251ralbidv 2861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  |-  ( K  =  0  ->  ( A. v  e.  V  ( ( V VDeg  E
) `  v )  =  K  <->  A. v  e.  V  ( ( V VDeg  E
) `  v )  =  0 ) )
53 r19.26 2952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  |-  ( A. v  e.  V  (
( ( V VDeg  E
) `  v )  =  0  /\  (
( V VDeg  E ) `  v )  =/=  0
)  <->  ( A. v  e.  V  ( ( V VDeg  E ) `  v
)  =  0  /\ 
A. v  e.  V  ( ( V VDeg  E
) `  v )  =/=  0 ) )
54 nne 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  |-  ( -.  ( ( V VDeg  E
) `  v )  =/=  0  <->  ( ( V VDeg 
E ) `  v
)  =  0 )
5554bicomi 205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  |-  ( ( ( V VDeg  E ) `
 v )  =  0  <->  -.  ( ( V VDeg  E ) `  v
)  =/=  0 )
5655anbi1i 699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  |-  ( ( ( ( V VDeg  E
) `  v )  =  0  /\  (
( V VDeg  E ) `  v )  =/=  0
)  <->  ( -.  (
( V VDeg  E ) `  v )  =/=  0  /\  ( ( V VDeg  E
) `  v )  =/=  0 ) )
57 ancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  |-  ( ( -.  ( ( V VDeg 
E ) `  v
)  =/=  0  /\  ( ( V VDeg  E
) `  v )  =/=  0 )  <->  ( (
( V VDeg  E ) `  v )  =/=  0  /\  -.  ( ( V VDeg 
E ) `  v
)  =/=  0 ) )
58 pm3.24 890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  |-  -.  (
( ( V VDeg  E
) `  v )  =/=  0  /\  -.  (
( V VDeg  E ) `  v )  =/=  0
)
5958bifal 1450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  |-  ( ( ( ( V VDeg  E
) `  v )  =/=  0  /\  -.  (
( V VDeg  E ) `  v )  =/=  0
)  <-> F.  )
6056, 57, 593bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  |-  ( ( ( ( V VDeg  E
) `  v )  =  0  /\  (
( V VDeg  E ) `  v )  =/=  0
)  <-> F.  )
6160ralbii 2853 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  |-  ( A. v  e.  V  (
( ( V VDeg  E
) `  v )  =  0  /\  (
( V VDeg  E ) `  v )  =/=  0
)  <->  A. v  e.  V F.  )
62 r19.3rzv 3892 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  |-  ( V  =/=  (/)  ->  ( F.  <->  A. v  e.  V F.  ) )
63 falim 1451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  |-  ( F. 
->  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) )
6462, 63syl6bir 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  |-  ( V  =/=  (/)  ->  ( A. v  e.  V F.  ->  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) )
6564adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  ( A. v  e.  V F.  ->  ( ( # `  V )  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) )
6665com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  |-  ( A. v  e.  V F.  ->  ( ( V  e. 
Fin  /\  V  =/=  (/) )  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) )
6761, 66sylbi 198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  |-  ( A. v  e.  V  (
( ( V VDeg  E
) `  v )  =  0  /\  (
( V VDeg  E ) `  v )  =/=  0
)  ->  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  (
( # `  V )  =  0  \/  ( # `
 V )  =  1  \/  ( # `  V )  =  3 ) ) )
6853, 67sylbir 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  |-  ( ( A. v  e.  V  ( ( V VDeg  E
) `  v )  =  0  /\  A. v  e.  V  (
( V VDeg  E ) `  v )  =/=  0
)  ->  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  (
( # `  V )  =  0  \/  ( # `
 V )  =  1  \/  ( # `  V )  =  3 ) ) )
6968ex 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  |-  ( A. v  e.  V  (
( V VDeg  E ) `  v )  =  0  ->  ( A. v  e.  V  ( ( V VDeg  E ) `  v
)  =/=  0  -> 
( ( V  e. 
Fin  /\  V  =/=  (/) )  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) )
7052, 69syl6bi 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  |-  ( K  =  0  ->  ( A. v  e.  V  ( ( V VDeg  E
) `  v )  =  K  ->  ( A. v  e.  V  (
( V VDeg  E ) `  v )  =/=  0  ->  ( ( V  e. 
Fin  /\  V  =/=  (/) )  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) )
7170com4t 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  |-  ( A. v  e.  V  (
( V VDeg  E ) `  v )  =/=  0  ->  ( ( V  e. 
Fin  /\  V  =/=  (/) )  ->  ( K  =  0  ->  ( A. v  e.  V  ( ( V VDeg  E
) `  v )  =  K  ->  ( (
# `  V )  =  0  \/  ( # `
 V )  =  1  \/  ( # `  V )  =  3 ) ) ) ) )
7247, 50, 713syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  |-  ( ( ( # `  V
)  e.  ( ZZ>= ` 
2 )  /\  V FriendGrph  E )  ->  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  ( K  =  0  ->  ( A. v  e.  V  ( ( V VDeg  E
) `  v )  =  K  ->  ( (
# `  V )  =  0  \/  ( # `
 V )  =  1  \/  ( # `  V )  =  3 ) ) ) ) )
7372ex 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  |-  ( (
# `  V )  e.  ( ZZ>= `  2 )  ->  ( V FriendGrph  E  ->  ( ( V  e.  Fin  /\  V  =/=  (/) )  -> 
( K  =  0  ->  ( A. v  e.  V  ( ( V VDeg  E ) `  v
)  =  K  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
7473com25 94 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  |-  ( (
# `  V )  e.  ( ZZ>= `  2 )  ->  ( A. v  e.  V  ( ( V VDeg 
E ) `  v
)  =  K  -> 
( ( V  e. 
Fin  /\  V  =/=  (/) )  ->  ( K  =  0  ->  ( V FriendGrph  E  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
7574adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  |-  ( ( ( -.  ( # `  V )  =  3  /\  -.  ( # `  V )  =  2 )  /\  ( # `  V )  e.  (
ZZ>= `  2 ) )  ->  ( A. v  e.  V  ( ( V VDeg  E ) `  v
)  =  K  -> 
( ( V  e. 
Fin  /\  V  =/=  (/) )  ->  ( K  =  0  ->  ( V FriendGrph  E  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
7675com15 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  ( V FriendGrph  E  ->  ( A. v  e.  V  ( ( V VDeg  E ) `  v
)  =  K  -> 
( ( V  e. 
Fin  /\  V  =/=  (/) )  ->  ( K  =  0  ->  (
( ( -.  ( # `
 V )  =  3  /\  -.  ( # `
 V )  =  2 )  /\  ( # `
 V )  e.  ( ZZ>= `  2 )
)  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
7776com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( A. v  e.  V  (
( V VDeg  E ) `  v )  =  K  ->  ( V FriendGrph  E  -> 
( ( V  e. 
Fin  /\  V  =/=  (/) )  ->  ( K  =  0  ->  (
( ( -.  ( # `
 V )  =  3  /\  -.  ( # `
 V )  =  2 )  /\  ( # `
 V )  e.  ( ZZ>= `  2 )
)  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
78773ad2ant3 1028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( ( V USGrph  E  /\  K  e. 
NN0  /\  A. v  e.  V  ( ( V VDeg  E ) `  v
)  =  K )  ->  ( V FriendGrph  E  -> 
( ( V  e. 
Fin  /\  V  =/=  (/) )  ->  ( K  =  0  ->  (
( ( -.  ( # `
 V )  =  3  /\  -.  ( # `
 V )  =  2 )  /\  ( # `
 V )  e.  ( ZZ>= `  2 )
)  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
7933, 78syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( <. V ,  E >. RegUSGrph  K  ->  ( V FriendGrph  E  ->  ( ( V  e.  Fin  /\  V  =/=  (/) )  -> 
( K  =  0  ->  ( ( ( -.  ( # `  V
)  =  3  /\ 
-.  ( # `  V
)  =  2 )  /\  ( # `  V
)  e.  ( ZZ>= ` 
2 ) )  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
8079impcom 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( ( V FriendGrph  E  /\  <. V ,  E >. RegUSGrph  K )  ->  (
( V  e.  Fin  /\  V  =/=  (/) )  -> 
( K  =  0  ->  ( ( ( -.  ( # `  V
)  =  3  /\ 
-.  ( # `  V
)  =  2 )  /\  ( # `  V
)  e.  ( ZZ>= ` 
2 ) )  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) )
8180impcom 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( V FriendGrph  E  /\  <. V ,  E >. RegUSGrph  K ) )  ->  ( K  =  0  ->  (
( ( -.  ( # `
 V )  =  3  /\  -.  ( # `
 V )  =  2 )  /\  ( # `
 V )  e.  ( ZZ>= `  2 )
)  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) )
82 frrusgraord 25797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  (
( V FriendGrph  E  /\  <. V ,  E >. RegUSGrph  K )  ->  ( # `  V
)  =  ( ( K  x.  ( K  -  1 ) )  +  1 ) ) )
8382imp 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( V FriendGrph  E  /\  <. V ,  E >. RegUSGrph  K ) )  ->  ( # `  V
)  =  ( ( K  x.  ( K  -  1 ) )  +  1 ) )
84 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  |-  ( K  =  2  ->  K  =  2 )
85 oveq1 6312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  |-  ( K  =  2  ->  ( K  -  1 )  =  ( 2  -  1 ) )
8684, 85oveq12d 6323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  ( K  =  2  ->  ( K  x.  ( K  -  1 ) )  =  ( 2  x.  ( 2  -  1 ) ) )
8786oveq1d 6320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( K  =  2  ->  (
( K  x.  ( K  -  1 ) )  +  1 )  =  ( ( 2  x.  ( 2  -  1 ) )  +  1 ) )
88 2m1e1 10731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  |-  ( 2  -  1 )  =  1
8988oveq2i 6316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  |-  ( 2  x.  ( 2  -  1 ) )  =  ( 2  x.  1 )
90 2t1e2 10765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  |-  ( 2  x.  1 )  =  2
9189, 90eqtri 2451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  |-  ( 2  x.  ( 2  -  1 ) )  =  2
9291oveq1i 6315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  ( ( 2  x.  ( 2  -  1 ) )  +  1 )  =  ( 2  +  1 )
93 2p1e3 10740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  ( 2  +  1 )  =  3
9492, 93eqtri 2451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( ( 2  x.  ( 2  -  1 ) )  +  1 )  =  3
9587, 94syl6eq 2479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( K  =  2  ->  (
( K  x.  ( K  -  1 ) )  +  1 )  =  3 )
9695eqeq2d 2436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( K  =  2  ->  (
( # `  V )  =  ( ( K  x.  ( K  - 
1 ) )  +  1 )  <->  ( # `  V
)  =  3 ) )
97 pm2.21 111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  ( -.  ( # `  V
)  =  3  -> 
( ( # `  V
)  =  3  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) )
9897adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( ( -.  ( # `  V
)  =  3  /\ 
-.  ( # `  V
)  =  2 )  ->  ( ( # `  V )  =  3  ->  ( ( # `  V )  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) )
9998adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( ( ( -.  ( # `  V )  =  3  /\  -.  ( # `  V )  =  2 )  /\  ( # `  V )  e.  (
ZZ>= `  2 ) )  ->  ( ( # `  V )  =  3  ->  ( ( # `  V )  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) )
10099com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( (
# `  V )  =  3  ->  (
( ( -.  ( # `
 V )  =  3  /\  -.  ( # `
 V )  =  2 )  /\  ( # `
 V )  e.  ( ZZ>= `  2 )
)  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) )
10196, 100syl6bi 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( K  =  2  ->  (
( # `  V )  =  ( ( K  x.  ( K  - 
1 ) )  +  1 )  ->  (
( ( -.  ( # `
 V )  =  3  /\  -.  ( # `
 V )  =  2 )  /\  ( # `
 V )  e.  ( ZZ>= `  2 )
)  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) )
10283, 101syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( V FriendGrph  E  /\  <. V ,  E >. RegUSGrph  K ) )  ->  ( K  =  2  ->  (
( ( -.  ( # `
 V )  =  3  /\  -.  ( # `
 V )  =  2 )  /\  ( # `
 V )  e.  ( ZZ>= `  2 )
)  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) )
103 frgrareg 25843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  (
( V FriendGrph  E  /\  <. V ,  E >. RegUSGrph  K )  ->  ( K  =  0  \/  K  =  2 ) ) )
104103imp 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( V FriendGrph  E  /\  <. V ,  E >. RegUSGrph  K ) )  ->  ( K  =  0  \/  K  =  2 ) )
10581, 102, 104mpjaod 382 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( V FriendGrph  E  /\  <. V ,  E >. RegUSGrph  K ) )  ->  ( (
( -.  ( # `  V )  =  3  /\  -.  ( # `  V )  =  2 )  /\  ( # `  V )  e.  (
ZZ>= `  2 ) )  ->  ( ( # `  V )  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) )
106105exp32 608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  ( V FriendGrph  E  ->  ( <. V ,  E >. RegUSGrph  K  -> 
( ( ( -.  ( # `  V
)  =  3  /\ 
-.  ( # `  V
)  =  2 )  /\  ( # `  V
)  e.  ( ZZ>= ` 
2 ) )  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) )
107106com34 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  ( V FriendGrph  E  ->  ( (
( -.  ( # `  V )  =  3  /\  -.  ( # `  V )  =  2 )  /\  ( # `  V )  e.  (
ZZ>= `  2 ) )  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) )
108107com23 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  (
( ( -.  ( # `
 V )  =  3  /\  -.  ( # `
 V )  =  2 )  /\  ( # `
 V )  e.  ( ZZ>= `  2 )
)  ->  ( V FriendGrph  E  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) )
109108exp4c 611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  ( -.  ( # `  V
)  =  3  -> 
( -.  ( # `  V )  =  2  ->  ( ( # `  V )  e.  (
ZZ>= `  2 )  -> 
( V FriendGrph  E  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) )
110109com34 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  ( -.  ( # `  V
)  =  3  -> 
( ( # `  V
)  e.  ( ZZ>= ` 
2 )  ->  ( -.  ( # `  V
)  =  2  -> 
( V FriendGrph  E  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) )
111110com25 94 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  ( V FriendGrph  E  ->  ( ( # `
 V )  e.  ( ZZ>= `  2 )  ->  ( -.  ( # `  V )  =  2  ->  ( -.  ( # `
 V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) )
112111ex 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( V  e.  Fin  ->  ( V  =/=  (/)  ->  ( V FriendGrph  E  ->  ( ( # `  V )  e.  (
ZZ>= `  2 )  -> 
( -.  ( # `  V )  =  2  ->  ( -.  ( # `
 V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
113112com23 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( V  e.  Fin  ->  ( V FriendGrph  E  ->  ( V  =/=  (/)  ->  ( ( # `
 V )  e.  ( ZZ>= `  2 )  ->  ( -.  ( # `  V )  =  2  ->  ( -.  ( # `
 V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
114113com14 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
# `  V )  e.  ( ZZ>= `  2 )  ->  ( V FriendGrph  E  ->  ( V  =/=  (/)  ->  ( V  e.  Fin  ->  ( -.  ( # `  V
)  =  2  -> 
( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
1151143imp 1199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( # `  V
)  e.  ( ZZ>= ` 
2 )  /\  V FriendGrph  E  /\  V  =/=  (/) )  -> 
( V  e.  Fin  ->  ( -.  ( # `  V )  =  2  ->  ( -.  ( # `
 V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
116115com3r 82 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( -.  ( # `  V
)  =  2  -> 
( ( ( # `  V )  e.  (
ZZ>= `  2 )  /\  V FriendGrph  E  /\  V  =/=  (/) )  ->  ( V  e.  Fin  ->  ( -.  ( # `  V
)  =  3  -> 
( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V )  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
11732, 116pm2.61i 167 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( # `  V
)  e.  ( ZZ>= ` 
2 )  /\  V FriendGrph  E  /\  V  =/=  (/) )  -> 
( V  e.  Fin  ->  ( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) )
1181173exp 1204 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
# `  V )  e.  ( ZZ>= `  2 )  ->  ( V FriendGrph  E  ->  ( V  =/=  (/)  ->  ( V  e.  Fin  ->  ( -.  ( # `  V
)  =  3  -> 
( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V )  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) )
11910, 118sylbir 216 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( # `  V
)  e.  NN  /\  ( # `  V )  =/=  1 )  -> 
( V FriendGrph  E  ->  ( V  =/=  (/)  ->  ( V  e.  Fin  ->  ( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) )
120119ex 435 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
# `  V )  e.  NN  ->  ( ( # `
 V )  =/=  1  ->  ( V FriendGrph  E  ->  ( V  =/=  (/)  ->  ( V  e. 
Fin  ->  ( -.  ( # `
 V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
1219, 120syl5bir 221 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
# `  V )  e.  NN  ->  ( -.  ( # `  V )  =  1  ->  ( V FriendGrph  E  ->  ( V  =/=  (/)  ->  ( V  e.  Fin  ->  ( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
122121com25 94 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
# `  V )  e.  NN  ->  ( V  e.  Fin  ->  ( V FriendGrph  E  ->  ( V  =/=  (/)  ->  ( -.  ( # `
 V )  =  1  ->  ( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
1238, 122sylbir 216 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( # `  V
)  e.  NN0  /\  ( # `  V )  =/=  0 )  -> 
( V  e.  Fin  ->  ( V FriendGrph  E  ->  ( V  =/=  (/)  ->  ( -.  ( # `  V
)  =  1  -> 
( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
124123ex 435 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  V )  e.  NN0  ->  ( ( # `
 V )  =/=  0  ->  ( V  e.  Fin  ->  ( V FriendGrph  E  ->  ( V  =/=  (/)  ->  ( -.  ( # `
 V )  =  1  ->  ( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) ) )
125124com23 81 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  V )  e.  NN0  ->  ( V  e.  Fin  ->  ( ( # `
 V )  =/=  0  ->  ( V FriendGrph  E  ->  ( V  =/=  (/)  ->  ( -.  ( # `
 V )  =  1  ->  ( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) ) )
126125impd 432 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  V )  e.  NN0  ->  ( ( V  e.  Fin  /\  ( # `
 V )  =/=  0 )  ->  ( V FriendGrph  E  ->  ( V  =/=  (/)  ->  ( -.  ( # `  V )  =  1  ->  ( -.  ( # `  V
)  =  3  -> 
( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V )  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
127126com14 91 . . . . . . . . . . . . . . . . 17  |-  ( V  =/=  (/)  ->  ( ( V  e.  Fin  /\  ( # `
 V )  =/=  0 )  ->  ( V FriendGrph  E  ->  ( ( # `
 V )  e. 
NN0  ->  ( -.  ( # `
 V )  =  1  ->  ( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
1287, 127mpcom 37 . . . . . . . . . . . . . . . 16  |-  ( ( V  e.  Fin  /\  ( # `  V )  =/=  0 )  -> 
( V FriendGrph  E  ->  (
( # `  V )  e.  NN0  ->  ( -.  ( # `  V
)  =  1  -> 
( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) )
129128ex 435 . . . . . . . . . . . . . . 15  |-  ( V  e.  Fin  ->  (
( # `  V )  =/=  0  ->  ( V FriendGrph  E  ->  ( ( # `
 V )  e. 
NN0  ->  ( -.  ( # `
 V )  =  1  ->  ( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
130129com14 91 . . . . . . . . . . . . . 14  |-  ( (
# `  V )  e.  NN0  ->  ( ( # `
 V )  =/=  0  ->  ( V FriendGrph  E  ->  ( V  e. 
Fin  ->  ( -.  ( # `
 V )  =  1  ->  ( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
1314, 130syl5bir 221 . . . . . . . . . . . . 13  |-  ( (
# `  V )  e.  NN0  ->  ( -.  ( # `  V )  =  0  ->  ( V FriendGrph  E  ->  ( V  e.  Fin  ->  ( -.  ( # `  V )  =  1  ->  ( -.  ( # `  V
)  =  3  -> 
( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V )  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
132131com24 90 . . . . . . . . . . . 12  |-  ( (
# `  V )  e.  NN0  ->  ( V  e.  Fin  ->  ( V FriendGrph  E  ->  ( -.  ( # `
 V )  =  0  ->  ( -.  ( # `  V )  =  1  ->  ( -.  ( # `  V
)  =  3  -> 
( <. V ,  E >. RegUSGrph  K  ->  ( ( # `  V )  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) ) ) )
1331323imp 1199 . . . . . . . . . . 11  |-  ( ( ( # `  V
)  e.  NN0  /\  V  e.  Fin  /\  V FriendGrph  E )  ->  ( -.  ( # `  V )  =  0  ->  ( -.  ( # `  V
)  =  1  -> 
( -.  ( # `  V )  =  3  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) ) )
134133com25 94 . . . . . . . . . 10  |-  ( ( ( # `  V
)  e.  NN0  /\  V  e.  Fin  /\  V FriendGrph  E )  ->  ( <. V ,  E >. RegUSGrph  K  -> 
( -.  ( # `  V )  =  1  ->  ( -.  ( # `
 V )  =  3  ->  ( -.  ( # `  V )  =  0  ->  (
( # `  V )  =  0  \/  ( # `
 V )  =  1  \/  ( # `  V )  =  3 ) ) ) ) ) )
135134imp 430 . . . . . . . . 9  |-  ( ( ( ( # `  V
)  e.  NN0  /\  V  e.  Fin  /\  V FriendGrph  E )  /\  <. V ,  E >. RegUSGrph  K )  ->  ( -.  ( # `  V
)  =  1  -> 
( -.  ( # `  V )  =  3  ->  ( -.  ( # `
 V )  =  0  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) )
136135com14 91 . . . . . . . 8  |-  ( -.  ( # `  V
)  =  0  -> 
( -.  ( # `  V )  =  1  ->  ( -.  ( # `
 V )  =  3  ->  ( (
( ( # `  V
)  e.  NN0  /\  V  e.  Fin  /\  V FriendGrph  E )  /\  <. V ,  E >. RegUSGrph  K )  ->  (
( # `  V )  =  0  \/  ( # `
 V )  =  1  \/  ( # `  V )  =  3 ) ) ) ) )
1371363imp 1199 . . . . . . 7  |-  ( ( -.  ( # `  V
)  =  0  /\ 
-.  ( # `  V
)  =  1  /\ 
-.  ( # `  V
)  =  3 )  ->  ( ( ( ( # `  V
)  e.  NN0  /\  V  e.  Fin  /\  V FriendGrph  E )  /\  <. V ,  E >. RegUSGrph  K )  ->  (
( # `  V )  =  0  \/  ( # `
 V )  =  1  \/  ( # `  V )  =  3 ) ) )
1383, 137sylbi 198 . . . . . 6  |-  ( -.  ( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 )  ->  ( ( ( ( # `  V
)  e.  NN0  /\  V  e.  Fin  /\  V FriendGrph  E )  /\  <. V ,  E >. RegUSGrph  K )  ->  (
( # `  V )  =  0  \/  ( # `
 V )  =  1  \/  ( # `  V )  =  3 ) ) )
1392, 138pm2.61i 167 . . . . 5  |-  ( ( ( ( # `  V
)  e.  NN0  /\  V  e.  Fin  /\  V FriendGrph  E )  /\  <. V ,  E >. RegUSGrph  K )  ->  (
( # `  V )  =  0  \/  ( # `
 V )  =  1  \/  ( # `  V )  =  3 ) )
1401393exp1 1221 . . . 4  |-  ( (
# `  V )  e.  NN0  ->  ( V  e.  Fin  ->  ( V FriendGrph  E  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) ) )
1411, 140mpcom 37 . . 3  |-  ( V  e.  Fin  ->  ( V FriendGrph  E  ->  ( <. V ,  E >. RegUSGrph  K  -> 
( ( # `  V
)  =  0  \/  ( # `  V
)  =  1  \/  ( # `  V
)  =  3 ) ) ) )
142141com12 32 . 2  |-  ( V FriendGrph  E  ->  ( V  e. 
Fin  ->  ( <. V ,  E >. RegUSGrph  K  ->  ( ( # `
 V )  =  0  \/  ( # `  V )  =  1  \/  ( # `  V
)  =  3 ) ) ) )
1431423imp 1199 1  |-  ( ( V FriendGrph  E  /\  V  e. 
Fin  /\  <. V ,  E >. RegUSGrph  K )  ->  (
( # `  V )  =  0  \/  ( # `
 V )  =  1  \/  ( # `  V )  =  3 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    \/ w3o 981    /\ w3a 982    = wceq 1437   F. wfal 1442   E.wex 1657    e. wcel 1872    =/= wne 2614   A.wral 2771   _Vcvv 3080   (/)c0 3761   {cpr 4000   <.cop 4004   class class class wbr 4423   ` cfv 5601  (class class class)co 6305   Fincfn 7580   RRcr 9545   0cc0 9546   1c1 9547    + caddc 9549    x. cmul 9551    < clt 9682    <_ cle 9683    - cmin 9867   NNcn 10616   2c2 10666   3c3 10667   NN0cn0 10876   ZZcz 10944   ZZ>=cuz 11166   #chash 12521   USGrph cusg 25055   VDeg cvdg 25619   RegUSGrph crusgra 25649   FriendGrph cfrgra 25714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-inf2 8155  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-pre-sup 9624
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-ot 4007  df-uni 4220  df-int 4256  df-iun 4301  df-disj 4395  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-2o 7194  df-oadd 7197  df-er 7374  df-ec 7376  df-qs 7380  df-map 7485  df-pm 7486  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-sup 7965  df-inf 7966  df-oi 8034  df-card 8381  df-cda 8605  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-n0 10877  df-z 10945  df-uz 11167  df-rp 11310  df-xadd 11417  df-ico 11648  df-fz 11792  df-fzo 11923  df-fl 12034  df-mod 12103  df-seq 12220  df-exp 12279  df-hash 12522  df-word 12668  df-lsw 12669  df-concat 12670  df-s1 12671  df-substr 12672  df-reps 12675  df-csh 12893  df-s2 12946  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13551  df-sum 13752  df-dvds 14305  df-gcd 14468  df-prm 14622  df-phi 14713  df-usgra 25058  df-nbgra 25146  df-wlk 25234  df-trail 25235  df-pth 25236  df-spth 25237  df-wlkon 25240  df-spthon 25243  df-wwlk 25405  df-wwlkn 25406  df-clwwlk 25477  df-clwwlkn 25478  df-2wlkonot 25584  df-2spthonot 25586  df-2spthsot 25587  df-vdgr 25620  df-rgra 25650  df-rusgra 25651  df-frgra 25715
This theorem is referenced by:  frgraregord13  25845
  Copyright terms: Public domain W3C validator