Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frgrancvvdeqlem4 Structured version   Unicode version

Theorem frgrancvvdeqlem4 30797
Description: Lemma 4 for frgrancvvdeq 30806. The restricted iota of a vertex is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 18-Dec-2017.)
Hypotheses
Ref Expression
frgrancvvdeq.nx  |-  D  =  ( <. V ,  E >. Neighbors  X )
frgrancvvdeq.ny  |-  N  =  ( <. V ,  E >. Neighbors  Y )
frgrancvvdeq.x  |-  ( ph  ->  X  e.  V )
frgrancvvdeq.y  |-  ( ph  ->  Y  e.  V )
frgrancvvdeq.ne  |-  ( ph  ->  X  =/=  Y )
frgrancvvdeq.xy  |-  ( ph  ->  Y  e/  D )
frgrancvvdeq.f  |-  ( ph  ->  V FriendGrph  E )
frgrancvvdeq.a  |-  A  =  ( x  e.  D  |->  ( iota_ y  e.  N  { x ,  y }  e.  ran  E
) )
Assertion
Ref Expression
frgrancvvdeqlem4  |-  ( (
ph  /\  x  e.  D )  ->  { (
iota_ y  e.  N  { x ,  y }  e.  ran  E
) }  =  ( ( <. V ,  E >. Neighbors  x )  i^i  N
) )
Distinct variable groups:    y, D    x, y, V    x, E, y    y, Y    ph, y    y, N
Allowed substitution hints:    ph( x)    A( x, y)    D( x)    N( x)    X( x, y)    Y( x)

Proof of Theorem frgrancvvdeqlem4
Dummy variables  a 
b  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrancvvdeq.ny . . 3  |-  N  =  ( <. V ,  E >. Neighbors  Y )
21ineq2i 3660 . 2  |-  ( (
<. V ,  E >. Neighbors  x
)  i^i  N )  =  ( ( <. V ,  E >. Neighbors  x
)  i^i  ( <. V ,  E >. Neighbors  Y ) )
3 frgrancvvdeq.nx . . . . . . 7  |-  D  =  ( <. V ,  E >. Neighbors  X )
43eleq2i 2532 . . . . . 6  |-  ( x  e.  D  <->  x  e.  ( <. V ,  E >. Neighbors  X ) )
5 frgrancvvdeq.f . . . . . . . 8  |-  ( ph  ->  V FriendGrph  E )
6 frisusgra 30755 . . . . . . . 8  |-  ( V FriendGrph  E  ->  V USGrph  E )
75, 6syl 16 . . . . . . 7  |-  ( ph  ->  V USGrph  E )
8 nbgraisvtx 23521 . . . . . . 7  |-  ( V USGrph  E  ->  ( x  e.  ( <. V ,  E >. Neighbors  X )  ->  x  e.  V ) )
97, 8syl 16 . . . . . 6  |-  ( ph  ->  ( x  e.  (
<. V ,  E >. Neighbors  X
)  ->  x  e.  V ) )
104, 9syl5bi 217 . . . . 5  |-  ( ph  ->  ( x  e.  D  ->  x  e.  V ) )
1110imp 429 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  x  e.  V )
12 frgrancvvdeq.x . . . . 5  |-  ( ph  ->  X  e.  V )
13 frgrancvvdeq.y . . . . 5  |-  ( ph  ->  Y  e.  V )
14 frgrancvvdeq.ne . . . . 5  |-  ( ph  ->  X  =/=  Y )
15 frgrancvvdeq.xy . . . . 5  |-  ( ph  ->  Y  e/  D )
16 frgrancvvdeq.a . . . . 5  |-  A  =  ( x  e.  D  |->  ( iota_ y  e.  N  { x ,  y }  e.  ran  E
) )
173, 1, 12, 13, 14, 15, 5, 16frgrancvvdeqlem1 30794 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  Y  e.  ( V  \  {
x } ) )
185adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  V FriendGrph  E )
19 frisusgranb 30760 . . . . 5  |-  ( V FriendGrph  E  ->  A. a  e.  V  A. b  e.  ( V  \  { a } ) E. n  e.  V  ( ( <. V ,  E >. Neighbors  a
)  i^i  ( <. V ,  E >. Neighbors  b ) )  =  { n } )
2018, 19syl 16 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  A. a  e.  V  A. b  e.  ( V  \  {
a } ) E. n  e.  V  ( ( <. V ,  E >. Neighbors 
a )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  {
n } )
2111, 17, 20jca31 534 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  (
( x  e.  V  /\  Y  e.  ( V  \  { x }
) )  /\  A. a  e.  V  A. b  e.  ( V  \  { a } ) E. n  e.  V  ( ( <. V ,  E >. Neighbors  a )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  {
n } ) )
22 sneq 3998 . . . . . . . . 9  |-  ( a  =  x  ->  { a }  =  { x } )
2322difeq2d 3585 . . . . . . . 8  |-  ( a  =  x  ->  ( V  \  { a } )  =  ( V 
\  { x }
) )
24 oveq2 6211 . . . . . . . . . . 11  |-  ( a  =  x  ->  ( <. V ,  E >. Neighbors  a
)  =  ( <. V ,  E >. Neighbors  x
) )
2524ineq1d 3662 . . . . . . . . . 10  |-  ( a  =  x  ->  (
( <. V ,  E >. Neighbors 
a )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  b
) ) )
2625eqeq1d 2456 . . . . . . . . 9  |-  ( a  =  x  ->  (
( ( <. V ,  E >. Neighbors  a )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  {
n }  <->  ( ( <. V ,  E >. Neighbors  x
)  i^i  ( <. V ,  E >. Neighbors  b ) )  =  { n } ) )
2726rexbidv 2868 . . . . . . . 8  |-  ( a  =  x  ->  ( E. n  e.  V  ( ( <. V ,  E >. Neighbors  a )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  {
n }  <->  E. n  e.  V  ( ( <. V ,  E >. Neighbors  x
)  i^i  ( <. V ,  E >. Neighbors  b ) )  =  { n } ) )
2823, 27raleqbidv 3037 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  ( V  \  { a } ) E. n  e.  V  ( ( <. V ,  E >. Neighbors  a
)  i^i  ( <. V ,  E >. Neighbors  b ) )  =  { n } 
<-> 
A. b  e.  ( V  \  { x } ) E. n  e.  V  ( ( <. V ,  E >. Neighbors  x
)  i^i  ( <. V ,  E >. Neighbors  b ) )  =  { n } ) )
2928rspcva 3177 . . . . . 6  |-  ( ( x  e.  V  /\  A. a  e.  V  A. b  e.  ( V  \  { a } ) E. n  e.  V  ( ( <. V ,  E >. Neighbors  a )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  {
n } )  ->  A. b  e.  ( V  \  { x }
) E. n  e.  V  ( ( <. V ,  E >. Neighbors  x
)  i^i  ( <. V ,  E >. Neighbors  b ) )  =  { n } )
30 oveq2 6211 . . . . . . . . . . . 12  |-  ( b  =  Y  ->  ( <. V ,  E >. Neighbors  b
)  =  ( <. V ,  E >. Neighbors  Y
) )
3130ineq2d 3663 . . . . . . . . . . 11  |-  ( b  =  Y  ->  (
( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) ) )
3231eqeq1d 2456 . . . . . . . . . 10  |-  ( b  =  Y  ->  (
( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  {
n }  <->  ( ( <. V ,  E >. Neighbors  x
)  i^i  ( <. V ,  E >. Neighbors  Y ) )  =  { n } ) )
3332rexbidv 2868 . . . . . . . . 9  |-  ( b  =  Y  ->  ( E. n  e.  V  ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  {
n }  <->  E. n  e.  V  ( ( <. V ,  E >. Neighbors  x
)  i^i  ( <. V ,  E >. Neighbors  Y ) )  =  { n } ) )
3433rspcva 3177 . . . . . . . 8  |-  ( ( Y  e.  ( V 
\  { x }
)  /\  A. b  e.  ( V  \  {
x } ) E. n  e.  V  ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  {
n } )  ->  E. n  e.  V  ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
n } )
35 ssnid 4017 . . . . . . . . . . . . . . 15  |-  n  e. 
{ n }
36 eleq2 2527 . . . . . . . . . . . . . . . . 17  |-  ( { n }  =  ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  ->  (
n  e.  { n } 
<->  n  e.  ( (
<. V ,  E >. Neighbors  x
)  i^i  ( <. V ,  E >. Neighbors  Y ) ) ) )
3736eqcoms 2466 . . . . . . . . . . . . . . . 16  |-  ( ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
n }  ->  (
n  e.  { n } 
<->  n  e.  ( (
<. V ,  E >. Neighbors  x
)  i^i  ( <. V ,  E >. Neighbors  Y ) ) ) )
38 elin 3650 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ( <. V ,  E >. Neighbors  x
)  i^i  ( <. V ,  E >. Neighbors  Y ) )  <->  ( n  e.  ( <. V ,  E >. Neighbors  x )  /\  n  e.  ( <. V ,  E >. Neighbors  Y ) ) )
3938biimpi 194 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ( <. V ,  E >. Neighbors  x
)  i^i  ( <. V ,  E >. Neighbors  Y ) )  ->  ( n  e.  ( <. V ,  E >. Neighbors  x )  /\  n  e.  ( <. V ,  E >. Neighbors  Y ) ) )
4037, 39syl6bi 228 . . . . . . . . . . . . . . 15  |-  ( ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
n }  ->  (
n  e.  { n }  ->  ( n  e.  ( <. V ,  E >. Neighbors  x )  /\  n  e.  ( <. V ,  E >. Neighbors  Y ) ) ) )
4135, 40mpi 17 . . . . . . . . . . . . . 14  |-  ( ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
n }  ->  (
n  e.  ( <. V ,  E >. Neighbors  x
)  /\  n  e.  ( <. V ,  E >. Neighbors  Y ) ) )
42 nbgraeledg 23520 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( V USGrph  E  ->  ( n  e.  ( <. V ,  E >. Neighbors  x )  <->  { n ,  x }  e.  ran  E ) )
43 prcom 4064 . . . . . . . . . . . . . . . . . . . . . . 23  |-  { n ,  x }  =  {
x ,  n }
4443eleq1i 2531 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( { n ,  x }  e.  ran  E  <->  { x ,  n }  e.  ran  E )
4542, 44syl6bb 261 . . . . . . . . . . . . . . . . . . . . 21  |-  ( V USGrph  E  ->  ( n  e.  ( <. V ,  E >. Neighbors  x )  <->  { x ,  n }  e.  ran  E ) )
4645biimpd 207 . . . . . . . . . . . . . . . . . . . 20  |-  ( V USGrph  E  ->  ( n  e.  ( <. V ,  E >. Neighbors  x )  ->  { x ,  n }  e.  ran  E ) )
477, 46syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( n  e.  (
<. V ,  E >. Neighbors  x
)  ->  { x ,  n }  e.  ran  E ) )
4847adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  D )  ->  (
n  e.  ( <. V ,  E >. Neighbors  x
)  ->  { x ,  n }  e.  ran  E ) )
4948com12 31 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( <. V ,  E >. Neighbors  x )  ->  (
( ph  /\  x  e.  D )  ->  { x ,  n }  e.  ran  E ) )
5049adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( <. V ,  E >. Neighbors  x
)  /\  n  e.  ( <. V ,  E >. Neighbors  Y ) )  -> 
( ( ph  /\  x  e.  D )  ->  { x ,  n }  e.  ran  E ) )
5150imp 429 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  (
<. V ,  E >. Neighbors  x
)  /\  n  e.  ( <. V ,  E >. Neighbors  Y ) )  /\  ( ph  /\  x  e.  D ) )  ->  { x ,  n }  e.  ran  E )
521eqcomi 2467 . . . . . . . . . . . . . . . . . . 19  |-  ( <. V ,  E >. Neighbors  Y
)  =  N
5352eleq2i 2532 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( <. V ,  E >. Neighbors  Y )  <->  n  e.  N )
5453biimpi 194 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( <. V ,  E >. Neighbors  Y )  ->  n  e.  N )
5554adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( <. V ,  E >. Neighbors  x
)  /\  n  e.  ( <. V ,  E >. Neighbors  Y ) )  ->  n  e.  N )
563, 1, 12, 13, 14, 15, 5, 16frgrancvvdeqlem3 30796 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  D )  ->  E! y  e.  N  {
x ,  y }  e.  ran  E )
57 preq2 4066 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  n  ->  { x ,  y }  =  { x ,  n } )
5857eleq1d 2523 . . . . . . . . . . . . . . . . 17  |-  ( y  =  n  ->  ( { x ,  y }  e.  ran  E  <->  { x ,  n }  e.  ran  E ) )
5958riota2 6187 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  N  /\  E! y  e.  N  { x ,  y }  e.  ran  E
)  ->  ( {
x ,  n }  e.  ran  E  <->  ( iota_ y  e.  N  { x ,  y }  e.  ran  E )  =  n ) )
6055, 56, 59syl2an 477 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  (
<. V ,  E >. Neighbors  x
)  /\  n  e.  ( <. V ,  E >. Neighbors  Y ) )  /\  ( ph  /\  x  e.  D ) )  -> 
( { x ,  n }  e.  ran  E  <-> 
( iota_ y  e.  N  { x ,  y }  e.  ran  E
)  =  n ) )
6151, 60mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  (
<. V ,  E >. Neighbors  x
)  /\  n  e.  ( <. V ,  E >. Neighbors  Y ) )  /\  ( ph  /\  x  e.  D ) )  -> 
( iota_ y  e.  N  { x ,  y }  e.  ran  E
)  =  n )
6241, 61sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
n }  /\  ( ph  /\  x  e.  D
) )  ->  ( iota_ y  e.  N  {
x ,  y }  e.  ran  E )  =  n )
6362eqcomd 2462 . . . . . . . . . . . 12  |-  ( ( ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
n }  /\  ( ph  /\  x  e.  D
) )  ->  n  =  ( iota_ y  e.  N  { x ,  y }  e.  ran  E ) )
6463sneqd 4000 . . . . . . . . . . 11  |-  ( ( ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
n }  /\  ( ph  /\  x  e.  D
) )  ->  { n }  =  { ( iota_ y  e.  N  {
x ,  y }  e.  ran  E ) } )
65 eqeq1 2458 . . . . . . . . . . . 12  |-  ( ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
n }  ->  (
( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
( iota_ y  e.  N  { x ,  y }  e.  ran  E
) }  <->  { n }  =  { ( iota_ y  e.  N  {
x ,  y }  e.  ran  E ) } ) )
6665adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
n }  /\  ( ph  /\  x  e.  D
) )  ->  (
( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
( iota_ y  e.  N  { x ,  y }  e.  ran  E
) }  <->  { n }  =  { ( iota_ y  e.  N  {
x ,  y }  e.  ran  E ) } ) )
6764, 66mpbird 232 . . . . . . . . . 10  |-  ( ( ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
n }  /\  ( ph  /\  x  e.  D
) )  ->  (
( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
( iota_ y  e.  N  { x ,  y }  e.  ran  E
) } )
6867ex 434 . . . . . . . . 9  |-  ( ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
n }  ->  (
( ph  /\  x  e.  D )  ->  (
( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
( iota_ y  e.  N  { x ,  y }  e.  ran  E
) } ) )
6968rexlimivw 2943 . . . . . . . 8  |-  ( E. n  e.  V  ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
n }  ->  (
( ph  /\  x  e.  D )  ->  (
( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
( iota_ y  e.  N  { x ,  y }  e.  ran  E
) } ) )
7034, 69syl 16 . . . . . . 7  |-  ( ( Y  e.  ( V 
\  { x }
)  /\  A. b  e.  ( V  \  {
x } ) E. n  e.  V  ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  {
n } )  -> 
( ( ph  /\  x  e.  D )  ->  ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
( iota_ y  e.  N  { x ,  y }  e.  ran  E
) } ) )
7170expcom 435 . . . . . 6  |-  ( A. b  e.  ( V  \  { x } ) E. n  e.  V  ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  {
n }  ->  ( Y  e.  ( V  \  { x } )  ->  ( ( ph  /\  x  e.  D )  ->  ( ( <. V ,  E >. Neighbors  x
)  i^i  ( <. V ,  E >. Neighbors  Y ) )  =  { (
iota_ y  e.  N  { x ,  y }  e.  ran  E
) } ) ) )
7229, 71syl 16 . . . . 5  |-  ( ( x  e.  V  /\  A. a  e.  V  A. b  e.  ( V  \  { a } ) E. n  e.  V  ( ( <. V ,  E >. Neighbors  a )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  {
n } )  -> 
( Y  e.  ( V  \  { x } )  ->  (
( ph  /\  x  e.  D )  ->  (
( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
( iota_ y  e.  N  { x ,  y }  e.  ran  E
) } ) ) )
7372impancom 440 . . . 4  |-  ( ( x  e.  V  /\  Y  e.  ( V  \  { x } ) )  ->  ( A. a  e.  V  A. b  e.  ( V  \  { a } ) E. n  e.  V  ( ( <. V ,  E >. Neighbors  a )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  {
n }  ->  (
( ph  /\  x  e.  D )  ->  (
( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
( iota_ y  e.  N  { x ,  y }  e.  ran  E
) } ) ) )
7473imp 429 . . 3  |-  ( ( ( x  e.  V  /\  Y  e.  ( V  \  { x }
) )  /\  A. a  e.  V  A. b  e.  ( V  \  { a } ) E. n  e.  V  ( ( <. V ,  E >. Neighbors  a )  i^i  ( <. V ,  E >. Neighbors  b
) )  =  {
n } )  -> 
( ( ph  /\  x  e.  D )  ->  ( ( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
( iota_ y  e.  N  { x ,  y }  e.  ran  E
) } ) )
7521, 74mpcom 36 . 2  |-  ( (
ph  /\  x  e.  D )  ->  (
( <. V ,  E >. Neighbors  x )  i^i  ( <. V ,  E >. Neighbors  Y
) )  =  {
( iota_ y  e.  N  { x ,  y }  e.  ran  E
) } )
762, 75syl5req 2508 1  |-  ( (
ph  /\  x  e.  D )  ->  { (
iota_ y  e.  N  { x ,  y }  e.  ran  E
) }  =  ( ( <. V ,  E >. Neighbors  x )  i^i  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648    e/ wnel 2649   A.wral 2799   E.wrex 2800   E!wreu 2801    \ cdif 3436    i^i cin 3438   {csn 3988   {cpr 3990   <.cop 3994   class class class wbr 4403    |-> cmpt 4461   ran crn 4952   iota_crio 6163  (class class class)co 6203   USGrph cusg 23443   Neighbors cnbgra 23508   FriendGrph cfrgra 30751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-card 8224  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-nn 10438  df-2 10495  df-n0 10695  df-z 10762  df-uz 10977  df-fz 11559  df-hash 12225  df-usgra 23445  df-nbgra 23511  df-frgra 30752
This theorem is referenced by:  frgrancvvdeqlem6  30799
  Copyright terms: Public domain W3C validator