![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrancvvdeqlem1 | Structured version Visualization version Unicode version |
Description: Lemma 1 for frgrancvvdeq 25826. (Contributed by Alexander van der Vekens, 22-Dec-2017.) |
Ref | Expression |
---|---|
frgrancvvdeq.nx |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
frgrancvvdeq.ny |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
frgrancvvdeq.x |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
frgrancvvdeq.y |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
frgrancvvdeq.ne |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
frgrancvvdeq.xy |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
frgrancvvdeq.f |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
frgrancvvdeq.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
frgrancvvdeqlem1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrancvvdeq.y |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 471 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | frgrancvvdeq.xy |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | df-nel 2636 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | eleq1a 2535 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | con3rr3 143 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | sylbi 200 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | syl 17 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | imp 435 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | elsncg 4003 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 1, 10 | syl 17 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11 | adantr 471 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 9, 12 | mtbird 307 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 2, 13 | eldifd 3427 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1680 ax-4 1693 ax-5 1769 ax-6 1816 ax-7 1862 ax-10 1926 ax-11 1931 ax-12 1944 ax-13 2102 ax-ext 2442 |
This theorem depends on definitions: df-bi 190 df-an 377 df-tru 1458 df-ex 1675 df-nf 1679 df-sb 1809 df-clab 2449 df-cleq 2455 df-clel 2458 df-nfc 2592 df-nel 2636 df-v 3059 df-dif 3419 df-sn 3981 |
This theorem is referenced by: frgrancvvdeqlem3 25816 frgrancvvdeqlem4 25817 |
Copyright terms: Public domain | W3C validator |