MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgra1v Structured version   Unicode version

Theorem frgra1v 25702
Description: Any graph with only one vertex is a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.)
Assertion
Ref Expression
frgra1v  |-  ( ( V  e.  X  /\  { V } USGrph  E )  ->  { V } FriendGrph  E )

Proof of Theorem frgra1v
Dummy variables  k 
l  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrav 25042 . . 3  |-  ( { V } USGrph  E  ->  ( { V }  e.  _V  /\  E  e.  _V ) )
2 simplr 760 . . . . 5  |-  ( ( ( ( { V }  e.  _V  /\  E  e.  _V )  /\  { V } USGrph  E )  /\  V  e.  X )  ->  { V } USGrph  E )
3 ral0 3899 . . . . . 6  |-  A. l  e.  (/)  E! x  e. 
{ V }  { { x ,  V } ,  { x ,  l } }  C_ 
ran  E
4 sneq 4003 . . . . . . . . . . 11  |-  ( k  =  V  ->  { k }  =  { V } )
54difeq2d 3580 . . . . . . . . . 10  |-  ( k  =  V  ->  ( { V }  \  {
k } )  =  ( { V }  \  { V } ) )
6 difid 3860 . . . . . . . . . 10  |-  ( { V }  \  { V } )  =  (/)
75, 6syl6eq 2477 . . . . . . . . 9  |-  ( k  =  V  ->  ( { V }  \  {
k } )  =  (/) )
8 preq2 4074 . . . . . . . . . . . 12  |-  ( k  =  V  ->  { x ,  k }  =  { x ,  V } )
98preq1d 4079 . . . . . . . . . . 11  |-  ( k  =  V  ->  { {
x ,  k } ,  { x ,  l } }  =  { { x ,  V } ,  { x ,  l } }
)
109sseq1d 3488 . . . . . . . . . 10  |-  ( k  =  V  ->  ( { { x ,  k } ,  { x ,  l } }  C_ 
ran  E  <->  { { x ,  V } ,  {
x ,  l } }  C_  ran  E ) )
1110reubidv 3011 . . . . . . . . 9  |-  ( k  =  V  ->  ( E! x  e.  { V }  { { x ,  k } ,  {
x ,  l } }  C_  ran  E  <->  E! x  e.  { V }  { { x ,  V } ,  { x ,  l } }  C_ 
ran  E ) )
127, 11raleqbidv 3037 . . . . . . . 8  |-  ( k  =  V  ->  ( A. l  e.  ( { V }  \  {
k } ) E! x  e.  { V }  { { x ,  k } ,  {
x ,  l } }  C_  ran  E  <->  A. l  e.  (/)  E! x  e. 
{ V }  { { x ,  V } ,  { x ,  l } }  C_ 
ran  E ) )
1312ralsng 4028 . . . . . . 7  |-  ( V  e.  X  ->  ( A. k  e.  { V } A. l  e.  ( { V }  \  { k } ) E! x  e.  { V }  { { x ,  k } ,  { x ,  l } }  C_  ran  E  <->  A. l  e.  (/)  E! x  e.  { V }  { { x ,  V } ,  { x ,  l } }  C_ 
ran  E ) )
1413adantl 467 . . . . . 6  |-  ( ( ( ( { V }  e.  _V  /\  E  e.  _V )  /\  { V } USGrph  E )  /\  V  e.  X )  ->  ( A. k  e. 
{ V } A. l  e.  ( { V }  \  { k } ) E! x  e.  { V }  { { x ,  k } ,  { x ,  l } }  C_ 
ran  E  <->  A. l  e.  (/)  E! x  e.  { V }  { { x ,  V } ,  {
x ,  l } }  C_  ran  E ) )
153, 14mpbiri 236 . . . . 5  |-  ( ( ( ( { V }  e.  _V  /\  E  e.  _V )  /\  { V } USGrph  E )  /\  V  e.  X )  ->  A. k  e.  { V } A. l  e.  ( { V }  \  { k } ) E! x  e.  { V }  { { x ,  k } ,  { x ,  l } }  C_  ran  E )
16 isfrgra 25694 . . . . . 6  |-  ( ( { V }  e.  _V  /\  E  e.  _V )  ->  ( { V } FriendGrph  E  <->  ( { V } USGrph  E  /\  A. k  e.  { V } A. l  e.  ( { V }  \  { k } ) E! x  e.  { V }  { { x ,  k } ,  { x ,  l } }  C_ 
ran  E ) ) )
1716ad2antrr 730 . . . . 5  |-  ( ( ( ( { V }  e.  _V  /\  E  e.  _V )  /\  { V } USGrph  E )  /\  V  e.  X )  ->  ( { V } FriendGrph  E  <-> 
( { V } USGrph  E  /\  A. k  e. 
{ V } A. l  e.  ( { V }  \  { k } ) E! x  e.  { V }  { { x ,  k } ,  { x ,  l } }  C_ 
ran  E ) ) )
182, 15, 17mpbir2and 930 . . . 4  |-  ( ( ( ( { V }  e.  _V  /\  E  e.  _V )  /\  { V } USGrph  E )  /\  V  e.  X )  ->  { V } FriendGrph  E )
1918ex 435 . . 3  |-  ( ( ( { V }  e.  _V  /\  E  e. 
_V )  /\  { V } USGrph  E )  -> 
( V  e.  X  ->  { V } FriendGrph  E ) )
201, 19mpancom 673 . 2  |-  ( { V } USGrph  E  ->  ( V  e.  X  ->  { V } FriendGrph  E ) )
2120impcom 431 1  |-  ( ( V  e.  X  /\  { V } USGrph  E )  ->  { V } FriendGrph  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1867   A.wral 2773   E!wreu 2775   _Vcvv 3078    \ cdif 3430    C_ wss 3433   (/)c0 3758   {csn 3993   {cpr 3995   class class class wbr 4417   ran crn 4847   USGrph cusg 25034   FriendGrph cfrgra 25692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4540  ax-nul 4548  ax-pr 4653
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-br 4418  df-opab 4477  df-xp 4852  df-rel 4853  df-cnv 4854  df-dm 4856  df-rn 4857  df-usgra 25037  df-frgra 25693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator