MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpval Structured version   Unicode version

Theorem frgpval 16626
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
frgpval.m  |-  G  =  (freeGrp `  I )
frgpval.b  |-  M  =  (freeMnd `  ( I  X.  2o ) )
frgpval.r  |-  .~  =  ( ~FG  `  I )
Assertion
Ref Expression
frgpval  |-  ( I  e.  V  ->  G  =  ( M  /.s  .~  )
)

Proof of Theorem frgpval
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 frgpval.m . 2  |-  G  =  (freeGrp `  I )
2 elex 3127 . . 3  |-  ( I  e.  V  ->  I  e.  _V )
3 xpeq1 5018 . . . . . . 7  |-  ( i  =  I  ->  (
i  X.  2o )  =  ( I  X.  2o ) )
43fveq2d 5875 . . . . . 6  |-  ( i  =  I  ->  (freeMnd `  ( i  X.  2o ) )  =  (freeMnd `  ( I  X.  2o ) ) )
5 frgpval.b . . . . . 6  |-  M  =  (freeMnd `  ( I  X.  2o ) )
64, 5syl6eqr 2526 . . . . 5  |-  ( i  =  I  ->  (freeMnd `  ( i  X.  2o ) )  =  M )
7 fveq2 5871 . . . . . 6  |-  ( i  =  I  ->  ( ~FG  `  i
)  =  ( ~FG  `  I
) )
8 frgpval.r . . . . . 6  |-  .~  =  ( ~FG  `  I )
97, 8syl6eqr 2526 . . . . 5  |-  ( i  =  I  ->  ( ~FG  `  i
)  =  .~  )
106, 9oveq12d 6312 . . . 4  |-  ( i  =  I  ->  (
(freeMnd `  ( i  X.  2o ) )  /.s  ( ~FG  `  i
) )  =  ( M  /.s 
.~  ) )
11 df-frgp 16578 . . . 4  |- freeGrp  =  ( i  e.  _V  |->  ( (freeMnd `  ( i  X.  2o ) )  /.s  ( ~FG  `  i
) ) )
12 ovex 6319 . . . 4  |-  ( M 
/.s  .~  )  e.  _V
1310, 11, 12fvmpt 5956 . . 3  |-  ( I  e.  _V  ->  (freeGrp `  I )  =  ( M  /.s 
.~  ) )
142, 13syl 16 . 2  |-  ( I  e.  V  ->  (freeGrp `  I )  =  ( M  /.s 
.~  ) )
151, 14syl5eq 2520 1  |-  ( I  e.  V  ->  G  =  ( M  /.s  .~  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767   _Vcvv 3118    X. cxp 5002   ` cfv 5593  (class class class)co 6294   2oc2o 7134    /.s cqus 14772  freeMndcfrmd 15881   ~FG cefg 16574  freeGrpcfrgp 16575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-iota 5556  df-fun 5595  df-fv 5601  df-ov 6297  df-frgp 16578
This theorem is referenced by:  frgp0  16628  frgpeccl  16629  frgpadd  16631  frgpupf  16641  frgpup1  16643  frgpup3lem  16645  frgpnabllem2  16728
  Copyright terms: Public domain W3C validator