MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpupf Structured version   Unicode version

Theorem frgpupf 16270
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b  |-  B  =  ( Base `  H
)
frgpup.n  |-  N  =  ( invg `  H )
frgpup.t  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
frgpup.h  |-  ( ph  ->  H  e.  Grp )
frgpup.i  |-  ( ph  ->  I  e.  V )
frgpup.a  |-  ( ph  ->  F : I --> B )
frgpup.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
frgpup.r  |-  .~  =  ( ~FG  `  I )
frgpup.g  |-  G  =  (freeGrp `  I )
frgpup.x  |-  X  =  ( Base `  G
)
frgpup.e  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
Assertion
Ref Expression
frgpupf  |-  ( ph  ->  E : X --> B )
Distinct variable groups:    y, g,
z    g, H    y, F, z    y, N, z    B, g, y, z    T, g    .~ , g    ph, g, y, z    y, I, z   
g, W
Allowed substitution hints:    .~ ( y, z)    T( y, z)    E( y, z, g)    F( g)    G( y, z, g)    H( y, z)    I( g)    N( g)    V( y, z, g)    W( y, z)    X( y, z, g)

Proof of Theorem frgpupf
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 frgpup.e . . . 4  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
2 frgpup.h . . . . . . 7  |-  ( ph  ->  H  e.  Grp )
3 grpmnd 15550 . . . . . . 7  |-  ( H  e.  Grp  ->  H  e.  Mnd )
42, 3syl 16 . . . . . 6  |-  ( ph  ->  H  e.  Mnd )
54adantr 465 . . . . 5  |-  ( (
ph  /\  g  e.  W )  ->  H  e.  Mnd )
6 frgpup.w . . . . . . . 8  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
7 fviss 5749 . . . . . . . 8  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
86, 7eqsstri 3386 . . . . . . 7  |-  W  C_ Word  ( I  X.  2o )
98sseli 3352 . . . . . 6  |-  ( g  e.  W  ->  g  e. Word  ( I  X.  2o ) )
10 frgpup.b . . . . . . 7  |-  B  =  ( Base `  H
)
11 frgpup.n . . . . . . 7  |-  N  =  ( invg `  H )
12 frgpup.t . . . . . . 7  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
13 frgpup.i . . . . . . 7  |-  ( ph  ->  I  e.  V )
14 frgpup.a . . . . . . 7  |-  ( ph  ->  F : I --> B )
1510, 11, 12, 2, 13, 14frgpuptf 16267 . . . . . 6  |-  ( ph  ->  T : ( I  X.  2o ) --> B )
16 wrdco 12459 . . . . . 6  |-  ( ( g  e. Word  ( I  X.  2o )  /\  T : ( I  X.  2o ) --> B )  -> 
( T  o.  g
)  e. Word  B )
179, 15, 16syl2anr 478 . . . . 5  |-  ( (
ph  /\  g  e.  W )  ->  ( T  o.  g )  e. Word  B )
1810gsumwcl 15518 . . . . 5  |-  ( ( H  e.  Mnd  /\  ( T  o.  g
)  e. Word  B )  ->  ( H  gsumg  ( T  o.  g
) )  e.  B
)
195, 17, 18syl2anc 661 . . . 4  |-  ( (
ph  /\  g  e.  W )  ->  ( H  gsumg  ( T  o.  g
) )  e.  B
)
20 frgpup.r . . . . . 6  |-  .~  =  ( ~FG  `  I )
216, 20efger 16215 . . . . 5  |-  .~  Er  W
2221a1i 11 . . . 4  |-  ( ph  ->  .~  Er  W )
23 fvex 5701 . . . . . 6  |-  (  _I 
` Word  ( I  X.  2o ) )  e.  _V
246, 23eqeltri 2513 . . . . 5  |-  W  e. 
_V
2524a1i 11 . . . 4  |-  ( ph  ->  W  e.  _V )
26 coeq2 4998 . . . . 5  |-  ( g  =  h  ->  ( T  o.  g )  =  ( T  o.  h ) )
2726oveq2d 6107 . . . 4  |-  ( g  =  h  ->  ( H  gsumg  ( T  o.  g
) )  =  ( H  gsumg  ( T  o.  h
) ) )
2810, 11, 12, 2, 13, 14, 6, 20frgpuplem 16269 . . . 4  |-  ( (
ph  /\  g  .~  h )  ->  ( H  gsumg  ( T  o.  g
) )  =  ( H  gsumg  ( T  o.  h
) ) )
291, 19, 22, 25, 27, 28qliftfund 7186 . . 3  |-  ( ph  ->  Fun  E )
301, 19, 22, 25qliftf 7188 . . 3  |-  ( ph  ->  ( Fun  E  <->  E :
( W /.  .~  )
--> B ) )
3129, 30mpbid 210 . 2  |-  ( ph  ->  E : ( W /.  .~  ) --> B )
32 frgpup.g . . . . . . 7  |-  G  =  (freeGrp `  I )
33 eqid 2443 . . . . . . 7  |-  (freeMnd `  (
I  X.  2o ) )  =  (freeMnd `  (
I  X.  2o ) )
3432, 33, 20frgpval 16255 . . . . . 6  |-  ( I  e.  V  ->  G  =  ( (freeMnd `  (
I  X.  2o ) )  /.s 
.~  ) )
3513, 34syl 16 . . . . 5  |-  ( ph  ->  G  =  ( (freeMnd `  ( I  X.  2o ) )  /.s  .~  )
)
36 2on 6928 . . . . . . . . 9  |-  2o  e.  On
37 xpexg 6507 . . . . . . . . 9  |-  ( ( I  e.  V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
3813, 36, 37sylancl 662 . . . . . . . 8  |-  ( ph  ->  ( I  X.  2o )  e.  _V )
39 wrdexg 12244 . . . . . . . 8  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
40 fvi 5748 . . . . . . . 8  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
4138, 39, 403syl 20 . . . . . . 7  |-  ( ph  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o ) )
426, 41syl5eq 2487 . . . . . 6  |-  ( ph  ->  W  = Word  ( I  X.  2o ) )
43 eqid 2443 . . . . . . . 8  |-  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) )
4433, 43frmdbas 15530 . . . . . . 7  |-  ( ( I  X.  2o )  e.  _V  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
4538, 44syl 16 . . . . . 6  |-  ( ph  ->  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word  ( I  X.  2o ) )
4642, 45eqtr4d 2478 . . . . 5  |-  ( ph  ->  W  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
47 fvex 5701 . . . . . . 7  |-  ( ~FG  `  I
)  e.  _V
4820, 47eqeltri 2513 . . . . . 6  |-  .~  e.  _V
4948a1i 11 . . . . 5  |-  ( ph  ->  .~  e.  _V )
50 fvex 5701 . . . . . 6  |-  (freeMnd `  (
I  X.  2o ) )  e.  _V
5150a1i 11 . . . . 5  |-  ( ph  ->  (freeMnd `  ( I  X.  2o ) )  e. 
_V )
5235, 46, 49, 51divsbas 14483 . . . 4  |-  ( ph  ->  ( W /.  .~  )  =  ( Base `  G ) )
53 frgpup.x . . . 4  |-  X  =  ( Base `  G
)
5452, 53syl6reqr 2494 . . 3  |-  ( ph  ->  X  =  ( W /.  .~  ) )
5554feq2d 5547 . 2  |-  ( ph  ->  ( E : X --> B 
<->  E : ( W /.  .~  ) --> B ) )
5631, 55mpbird 232 1  |-  ( ph  ->  E : X --> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2972   (/)c0 3637   ifcif 3791   <.cop 3883    e. cmpt 4350    _I cid 4631   Oncon0 4719    X. cxp 4838   ran crn 4841    o. ccom 4844   Fun wfun 5412   -->wf 5414   ` cfv 5418  (class class class)co 6091    e. cmpt2 6093   2oc2o 6914    Er wer 7098   [cec 7099   /.cqs 7100  Word cword 12221   Basecbs 14174    gsumg cgsu 14379    /.s cqus 14443   Mndcmnd 15409   Grpcgrp 15410   invgcminusg 15411  freeMndcfrmd 15525   ~FG cefg 16203  freeGrpcfrgp 16204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-ot 3886  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-ec 7103  df-qs 7107  df-map 7216  df-pm 7217  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-fz 11438  df-fzo 11549  df-seq 11807  df-hash 12104  df-word 12229  df-concat 12231  df-s1 12232  df-substr 12233  df-splice 12234  df-s2 12475  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-0g 14380  df-gsum 14381  df-imas 14446  df-divs 14447  df-mnd 15415  df-submnd 15465  df-frmd 15527  df-grp 15545  df-minusg 15546  df-efg 16206  df-frgp 16207
This theorem is referenced by:  frgpupval  16271  frgpup1  16272
  Copyright terms: Public domain W3C validator