MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpupf Structured version   Unicode version

Theorem frgpupf 16665
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b  |-  B  =  ( Base `  H
)
frgpup.n  |-  N  =  ( invg `  H )
frgpup.t  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
frgpup.h  |-  ( ph  ->  H  e.  Grp )
frgpup.i  |-  ( ph  ->  I  e.  V )
frgpup.a  |-  ( ph  ->  F : I --> B )
frgpup.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
frgpup.r  |-  .~  =  ( ~FG  `  I )
frgpup.g  |-  G  =  (freeGrp `  I )
frgpup.x  |-  X  =  ( Base `  G
)
frgpup.e  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
Assertion
Ref Expression
frgpupf  |-  ( ph  ->  E : X --> B )
Distinct variable groups:    y, g,
z    g, H    y, F, z    y, N, z    B, g, y, z    T, g    .~ , g    ph, g, y, z    y, I, z   
g, W
Allowed substitution hints:    .~ ( y, z)    T( y, z)    E( y, z, g)    F( g)    G( y, z, g)    H( y, z)    I( g)    N( g)    V( y, z, g)    W( y, z)    X( y, z, g)

Proof of Theorem frgpupf
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 frgpup.e . . . 4  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
2 frgpup.h . . . . . . 7  |-  ( ph  ->  H  e.  Grp )
3 grpmnd 15936 . . . . . . 7  |-  ( H  e.  Grp  ->  H  e.  Mnd )
42, 3syl 16 . . . . . 6  |-  ( ph  ->  H  e.  Mnd )
54adantr 465 . . . . 5  |-  ( (
ph  /\  g  e.  W )  ->  H  e.  Mnd )
6 frgpup.w . . . . . . . 8  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
7 fviss 5916 . . . . . . . 8  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
86, 7eqsstri 3519 . . . . . . 7  |-  W  C_ Word  ( I  X.  2o )
98sseli 3485 . . . . . 6  |-  ( g  e.  W  ->  g  e. Word  ( I  X.  2o ) )
10 frgpup.b . . . . . . 7  |-  B  =  ( Base `  H
)
11 frgpup.n . . . . . . 7  |-  N  =  ( invg `  H )
12 frgpup.t . . . . . . 7  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
13 frgpup.i . . . . . . 7  |-  ( ph  ->  I  e.  V )
14 frgpup.a . . . . . . 7  |-  ( ph  ->  F : I --> B )
1510, 11, 12, 2, 13, 14frgpuptf 16662 . . . . . 6  |-  ( ph  ->  T : ( I  X.  2o ) --> B )
16 wrdco 12776 . . . . . 6  |-  ( ( g  e. Word  ( I  X.  2o )  /\  T : ( I  X.  2o ) --> B )  -> 
( T  o.  g
)  e. Word  B )
179, 15, 16syl2anr 478 . . . . 5  |-  ( (
ph  /\  g  e.  W )  ->  ( T  o.  g )  e. Word  B )
1810gsumwcl 15882 . . . . 5  |-  ( ( H  e.  Mnd  /\  ( T  o.  g
)  e. Word  B )  ->  ( H  gsumg  ( T  o.  g
) )  e.  B
)
195, 17, 18syl2anc 661 . . . 4  |-  ( (
ph  /\  g  e.  W )  ->  ( H  gsumg  ( T  o.  g
) )  e.  B
)
20 frgpup.r . . . . . 6  |-  .~  =  ( ~FG  `  I )
216, 20efger 16610 . . . . 5  |-  .~  Er  W
2221a1i 11 . . . 4  |-  ( ph  ->  .~  Er  W )
23 fvex 5866 . . . . . 6  |-  (  _I 
` Word  ( I  X.  2o ) )  e.  _V
246, 23eqeltri 2527 . . . . 5  |-  W  e. 
_V
2524a1i 11 . . . 4  |-  ( ph  ->  W  e.  _V )
26 coeq2 5151 . . . . 5  |-  ( g  =  h  ->  ( T  o.  g )  =  ( T  o.  h ) )
2726oveq2d 6297 . . . 4  |-  ( g  =  h  ->  ( H  gsumg  ( T  o.  g
) )  =  ( H  gsumg  ( T  o.  h
) ) )
2810, 11, 12, 2, 13, 14, 6, 20frgpuplem 16664 . . . 4  |-  ( (
ph  /\  g  .~  h )  ->  ( H  gsumg  ( T  o.  g
) )  =  ( H  gsumg  ( T  o.  h
) ) )
291, 19, 22, 25, 27, 28qliftfund 7399 . . 3  |-  ( ph  ->  Fun  E )
301, 19, 22, 25qliftf 7401 . . 3  |-  ( ph  ->  ( Fun  E  <->  E :
( W /.  .~  )
--> B ) )
3129, 30mpbid 210 . 2  |-  ( ph  ->  E : ( W /.  .~  ) --> B )
32 frgpup.g . . . . . . 7  |-  G  =  (freeGrp `  I )
33 eqid 2443 . . . . . . 7  |-  (freeMnd `  (
I  X.  2o ) )  =  (freeMnd `  (
I  X.  2o ) )
3432, 33, 20frgpval 16650 . . . . . 6  |-  ( I  e.  V  ->  G  =  ( (freeMnd `  (
I  X.  2o ) )  /.s 
.~  ) )
3513, 34syl 16 . . . . 5  |-  ( ph  ->  G  =  ( (freeMnd `  ( I  X.  2o ) )  /.s  .~  )
)
36 2on 7140 . . . . . . . . 9  |-  2o  e.  On
37 xpexg 6587 . . . . . . . . 9  |-  ( ( I  e.  V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
3813, 36, 37sylancl 662 . . . . . . . 8  |-  ( ph  ->  ( I  X.  2o )  e.  _V )
39 wrdexg 12536 . . . . . . . 8  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
40 fvi 5915 . . . . . . . 8  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
4138, 39, 403syl 20 . . . . . . 7  |-  ( ph  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o ) )
426, 41syl5eq 2496 . . . . . 6  |-  ( ph  ->  W  = Word  ( I  X.  2o ) )
43 eqid 2443 . . . . . . . 8  |-  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) )
4433, 43frmdbas 15894 . . . . . . 7  |-  ( ( I  X.  2o )  e.  _V  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
4538, 44syl 16 . . . . . 6  |-  ( ph  ->  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word  ( I  X.  2o ) )
4642, 45eqtr4d 2487 . . . . 5  |-  ( ph  ->  W  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
47 fvex 5866 . . . . . . 7  |-  ( ~FG  `  I
)  e.  _V
4820, 47eqeltri 2527 . . . . . 6  |-  .~  e.  _V
4948a1i 11 . . . . 5  |-  ( ph  ->  .~  e.  _V )
50 fvex 5866 . . . . . 6  |-  (freeMnd `  (
I  X.  2o ) )  e.  _V
5150a1i 11 . . . . 5  |-  ( ph  ->  (freeMnd `  ( I  X.  2o ) )  e. 
_V )
5235, 46, 49, 51qusbas 14819 . . . 4  |-  ( ph  ->  ( W /.  .~  )  =  ( Base `  G ) )
53 frgpup.x . . . 4  |-  X  =  ( Base `  G
)
5452, 53syl6reqr 2503 . . 3  |-  ( ph  ->  X  =  ( W /.  .~  ) )
5554feq2d 5708 . 2  |-  ( ph  ->  ( E : X --> B 
<->  E : ( W /.  .~  ) --> B ) )
5631, 55mpbird 232 1  |-  ( ph  ->  E : X --> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1383    e. wcel 1804   _Vcvv 3095   (/)c0 3770   ifcif 3926   <.cop 4020    |-> cmpt 4495    _I cid 4780   Oncon0 4868    X. cxp 4987   ran crn 4990    o. ccom 4993   Fun wfun 5572   -->wf 5574   ` cfv 5578  (class class class)co 6281    |-> cmpt2 6283   2oc2o 7126    Er wer 7310   [cec 7311   /.cqs 7312  Word cword 12513   Basecbs 14509    gsumg cgsu 14715    /.s cqus 14779   Mndcmnd 15793  freeMndcfrmd 15889   Grpcgrp 15927   invgcminusg 15928   ~FG cefg 16598  freeGrpcfrgp 16599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-ot 4023  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-ec 7315  df-qs 7319  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-sup 7903  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-7 10605  df-8 10606  df-9 10607  df-10 10608  df-n0 10802  df-z 10871  df-dec 10985  df-uz 11091  df-fz 11682  df-fzo 11804  df-seq 12087  df-hash 12385  df-word 12521  df-concat 12523  df-s1 12524  df-substr 12525  df-splice 12526  df-s2 12792  df-struct 14511  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-sca 14590  df-vsca 14591  df-ip 14592  df-tset 14593  df-ple 14594  df-ds 14596  df-0g 14716  df-gsum 14717  df-imas 14782  df-qus 14783  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15841  df-frmd 15891  df-grp 15931  df-minusg 15932  df-efg 16601  df-frgp 16602
This theorem is referenced by:  frgpupval  16666  frgpup1  16667
  Copyright terms: Public domain W3C validator