MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup3lem Structured version   Unicode version

Theorem frgpup3lem 16591
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup.b  |-  B  =  ( Base `  H
)
frgpup.n  |-  N  =  ( invg `  H )
frgpup.t  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
frgpup.h  |-  ( ph  ->  H  e.  Grp )
frgpup.i  |-  ( ph  ->  I  e.  V )
frgpup.a  |-  ( ph  ->  F : I --> B )
frgpup.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
frgpup.r  |-  .~  =  ( ~FG  `  I )
frgpup.g  |-  G  =  (freeGrp `  I )
frgpup.x  |-  X  =  ( Base `  G
)
frgpup.e  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
frgpup.u  |-  U  =  (varFGrp `  I )
frgpup3.k  |-  ( ph  ->  K  e.  ( G 
GrpHom  H ) )
frgpup3.e  |-  ( ph  ->  ( K  o.  U
)  =  F )
Assertion
Ref Expression
frgpup3lem  |-  ( ph  ->  K  =  E )
Distinct variable groups:    y, g,
z    g, H    y, F, z    y, N, z    B, g, y, z    T, g    .~ , g    ph, g, y, z    y, I, z   
g, W
Allowed substitution hints:    .~ ( y, z)    T( y, z)    U( y, z, g)    E( y, z, g)    F( g)    G( y, z, g)    H( y, z)    I( g)    K( y, z, g)    N( g)    V( y, z, g)    W( y, z)    X( y, z, g)

Proof of Theorem frgpup3lem
Dummy variables  a 
t  n  i  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup3.k . . 3  |-  ( ph  ->  K  e.  ( G 
GrpHom  H ) )
2 frgpup.x . . . 4  |-  X  =  ( Base `  G
)
3 frgpup.b . . . 4  |-  B  =  ( Base `  H
)
42, 3ghmf 16066 . . 3  |-  ( K  e.  ( G  GrpHom  H )  ->  K : X
--> B )
5 ffn 5729 . . 3  |-  ( K : X --> B  ->  K  Fn  X )
61, 4, 53syl 20 . 2  |-  ( ph  ->  K  Fn  X )
7 frgpup.n . . . 4  |-  N  =  ( invg `  H )
8 frgpup.t . . . 4  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
9 frgpup.h . . . 4  |-  ( ph  ->  H  e.  Grp )
10 frgpup.i . . . 4  |-  ( ph  ->  I  e.  V )
11 frgpup.a . . . 4  |-  ( ph  ->  F : I --> B )
12 frgpup.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
13 frgpup.r . . . 4  |-  .~  =  ( ~FG  `  I )
14 frgpup.g . . . 4  |-  G  =  (freeGrp `  I )
15 frgpup.e . . . 4  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
163, 7, 8, 9, 10, 11, 12, 13, 14, 2, 15frgpup1 16589 . . 3  |-  ( ph  ->  E  e.  ( G 
GrpHom  H ) )
172, 3ghmf 16066 . . 3  |-  ( E  e.  ( G  GrpHom  H )  ->  E : X
--> B )
18 ffn 5729 . . 3  |-  ( E : X --> B  ->  E  Fn  X )
1916, 17, 183syl 20 . 2  |-  ( ph  ->  E  Fn  X )
20 eqid 2467 . . . . . . . . 9  |-  (freeMnd `  (
I  X.  2o ) )  =  (freeMnd `  (
I  X.  2o ) )
2114, 20, 13frgpval 16572 . . . . . . . 8  |-  ( I  e.  V  ->  G  =  ( (freeMnd `  (
I  X.  2o ) )  /.s 
.~  ) )
2210, 21syl 16 . . . . . . 7  |-  ( ph  ->  G  =  ( (freeMnd `  ( I  X.  2o ) )  /.s  .~  )
)
23 2on 7135 . . . . . . . . . . 11  |-  2o  e.  On
24 xpexg 6709 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
2510, 23, 24sylancl 662 . . . . . . . . . 10  |-  ( ph  ->  ( I  X.  2o )  e.  _V )
26 wrdexg 12519 . . . . . . . . . 10  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
27 fvi 5922 . . . . . . . . . 10  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
2825, 26, 273syl 20 . . . . . . . . 9  |-  ( ph  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o ) )
2912, 28syl5eq 2520 . . . . . . . 8  |-  ( ph  ->  W  = Word  ( I  X.  2o ) )
30 eqid 2467 . . . . . . . . . 10  |-  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) )
3120, 30frmdbas 15843 . . . . . . . . 9  |-  ( ( I  X.  2o )  e.  _V  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
3225, 31syl 16 . . . . . . . 8  |-  ( ph  ->  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word  ( I  X.  2o ) )
3329, 32eqtr4d 2511 . . . . . . 7  |-  ( ph  ->  W  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
34 fvex 5874 . . . . . . . . 9  |-  ( ~FG  `  I
)  e.  _V
3513, 34eqeltri 2551 . . . . . . . 8  |-  .~  e.  _V
3635a1i 11 . . . . . . 7  |-  ( ph  ->  .~  e.  _V )
37 fvex 5874 . . . . . . . 8  |-  (freeMnd `  (
I  X.  2o ) )  e.  _V
3837a1i 11 . . . . . . 7  |-  ( ph  ->  (freeMnd `  ( I  X.  2o ) )  e. 
_V )
3922, 33, 36, 38divsbas 14796 . . . . . 6  |-  ( ph  ->  ( W /.  .~  )  =  ( Base `  G ) )
4039, 2syl6reqr 2527 . . . . 5  |-  ( ph  ->  X  =  ( W /.  .~  ) )
41 eqimss 3556 . . . . 5  |-  ( X  =  ( W /.  .~  )  ->  X  C_  ( W /.  .~  ) )
4240, 41syl 16 . . . 4  |-  ( ph  ->  X  C_  ( W /.  .~  ) )
4342sselda 3504 . . 3  |-  ( (
ph  /\  a  e.  X )  ->  a  e.  ( W /.  .~  ) )
44 eqid 2467 . . . 4  |-  ( W /.  .~  )  =  ( W /.  .~  )
45 fveq2 5864 . . . . 5  |-  ( [ t ]  .~  =  a  ->  ( K `  [ t ]  .~  )  =  ( K `  a ) )
46 fveq2 5864 . . . . 5  |-  ( [ t ]  .~  =  a  ->  ( E `  [ t ]  .~  )  =  ( E `  a ) )
4745, 46eqeq12d 2489 . . . 4  |-  ( [ t ]  .~  =  a  ->  ( ( K `
 [ t ]  .~  )  =  ( E `  [ t ]  .~  )  <->  ( K `  a )  =  ( E `  a ) ) )
48 simpr 461 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  W )  ->  t  e.  W )
4929adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  W )  ->  W  = Word  ( I  X.  2o ) )
5048, 49eleqtrd 2557 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  W )  ->  t  e. Word  ( I  X.  2o ) )
51 wrdf 12515 . . . . . . . . . . . . 13  |-  ( t  e. Word  ( I  X.  2o )  ->  t : ( 0..^ ( # `  t ) ) --> ( I  X.  2o ) )
5250, 51syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  W )  ->  t : ( 0..^ (
# `  t )
) --> ( I  X.  2o ) )
5352ffvelrnda 6019 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  ( t `  n )  e.  ( I  X.  2o ) )
54 elxp2 5017 . . . . . . . . . . 11  |-  ( ( t `  n )  e.  ( I  X.  2o )  <->  E. i  e.  I  E. j  e.  2o  ( t `  n
)  =  <. i ,  j >. )
5553, 54sylib 196 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  E. i  e.  I  E. j  e.  2o  ( t `  n
)  =  <. i ,  j >. )
56 fveq2 5864 . . . . . . . . . . . . . . . . 17  |-  ( y  =  i  ->  ( F `  y )  =  ( F `  i ) )
5756fveq2d 5868 . . . . . . . . . . . . . . . . 17  |-  ( y  =  i  ->  ( N `  ( F `  y ) )  =  ( N `  ( F `  i )
) )
5856, 57ifeq12d 3959 . . . . . . . . . . . . . . . 16  |-  ( y  =  i  ->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) )  =  if ( z  =  (/) ,  ( F `
 i ) ,  ( N `  ( F `  i )
) ) )
59 eqeq1 2471 . . . . . . . . . . . . . . . . 17  |-  ( z  =  j  ->  (
z  =  (/)  <->  j  =  (/) ) )
6059ifbid 3961 . . . . . . . . . . . . . . . 16  |-  ( z  =  j  ->  if ( z  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  if ( j  =  (/) ,  ( F `
 i ) ,  ( N `  ( F `  i )
) ) )
61 fvex 5874 . . . . . . . . . . . . . . . . 17  |-  ( F `
 i )  e. 
_V
62 fvex 5874 . . . . . . . . . . . . . . . . 17  |-  ( N `
 ( F `  i ) )  e. 
_V
6361, 62ifex 4008 . . . . . . . . . . . . . . . 16  |-  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) )  e.  _V
6458, 60, 8, 63ovmpt2 6420 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  I  /\  j  e.  2o )  ->  ( i T j )  =  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) ) )
6564adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  -> 
( i T j )  =  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) ) )
66 elpri 4047 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  { (/) ,  1o }  ->  ( j  =  (/)  \/  j  =  1o ) )
67 df2o3 7140 . . . . . . . . . . . . . . . . 17  |-  2o  =  { (/) ,  1o }
6866, 67eleq2s 2575 . . . . . . . . . . . . . . . 16  |-  ( j  e.  2o  ->  (
j  =  (/)  \/  j  =  1o ) )
69 frgpup3.e . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( K  o.  U
)  =  F )
7069adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  ( K  o.  U )  =  F )
7170fveq1d 5866 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  (
( K  o.  U
) `  i )  =  ( F `  i ) )
72 frgpup.u . . . . . . . . . . . . . . . . . . . . . . 23  |-  U  =  (varFGrp `  I )
7313, 72, 14, 2vrgpf 16582 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( I  e.  V  ->  U : I --> X )
7410, 73syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  U : I --> X )
75 fvco3 5942 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( U : I --> X  /\  i  e.  I )  ->  ( ( K  o.  U ) `  i
)  =  ( K `
 ( U `  i ) ) )
7674, 75sylan 471 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  (
( K  o.  U
) `  i )  =  ( K `  ( U `  i ) ) )
7771, 76eqtr3d 2510 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  I )  ->  ( F `  i )  =  ( K `  ( U `  i ) ) )
7877adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  ( F `  i )  =  ( K `  ( U `  i ) ) )
79 iftrue 3945 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  (/)  ->  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) )  =  ( F `  i ) )
8079adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( F `  i ) )
81 simpr 461 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  j  =  (/) )
8281opeq2d 4220 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  <. i ,  j >.  =  <. i ,  (/) >. )
8382s1eqd 12572 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  <" <. i ,  j >. ">  =  <" <. i ,  (/) >. "> )
8483eceq1d 7345 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  [ <"
<. i ,  j >. "> ]  .~  =  [ <" <. i ,  (/) >. "> ]  .~  )
8513, 72vrgpval 16581 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  V  /\  i  e.  I )  ->  ( U `  i
)  =  [ <"
<. i ,  (/) >. "> ]  .~  )
8610, 85sylan 471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  ( U `  i )  =  [ <" <. i ,  (/) >. "> ]  .~  )
8786adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  ( U `  i )  =  [ <" <. i ,  (/) >. "> ]  .~  )
8884, 87eqtr4d 2511 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  [ <"
<. i ,  j >. "> ]  .~  =  ( U `  i ) )
8988fveq2d 5868 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  ( K `  [ <" <. i ,  j >. "> ]  .~  )  =  ( K `  ( U `
 i ) ) )
9078, 80, 893eqtr4d 2518 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
9177fveq2d 5868 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  ( N `  ( F `  i ) )  =  ( N `  ( K `  ( U `  i ) ) ) )
921adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  K  e.  ( G  GrpHom  H ) )
9374ffvelrnda 6019 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  ( U `  i )  e.  X )
94 eqid 2467 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( invg `  G )  =  ( invg `  G )
952, 94, 7ghminv 16069 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  ( G 
GrpHom  H )  /\  ( U `  i )  e.  X )  ->  ( K `  ( ( invg `  G ) `
 ( U `  i ) ) )  =  ( N `  ( K `  ( U `
 i ) ) ) )
9692, 93, 95syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  ( K `  ( ( invg `  G ) `
 ( U `  i ) ) )  =  ( N `  ( K `  ( U `
 i ) ) ) )
9791, 96eqtr4d 2511 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  I )  ->  ( N `  ( F `  i ) )  =  ( K `  (
( invg `  G ) `  ( U `  i )
) ) )
9897adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  ( N `  ( F `  i ) )  =  ( K `  (
( invg `  G ) `  ( U `  i )
) ) )
99 1n0 7142 . . . . . . . . . . . . . . . . . . . 20  |-  1o  =/=  (/)
100 simpr 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  j  =  1o )
101100neeq1d 2744 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  (
j  =/=  (/)  <->  1o  =/=  (/) ) )
10299, 101mpbiri 233 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  j  =/=  (/) )
103 ifnefalse 3951 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =/=  (/)  ->  if (
j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) )  =  ( N `  ( F `
 i ) ) )
104102, 103syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( N `  ( F `  i ) ) )
105100opeq2d 4220 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  <. i ,  j >.  =  <. i ,  1o >. )
106105s1eqd 12572 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  <" <. i ,  j >. ">  =  <" <. i ,  1o >. "> )
107106eceq1d 7345 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  [ <"
<. i ,  j >. "> ]  .~  =  [ <" <. i ,  1o >. "> ]  .~  )
10813, 72, 14, 94vrgpinv 16583 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  V  /\  i  e.  I )  ->  ( ( invg `  G ) `  ( U `  i )
)  =  [ <"
<. i ,  1o >. "> ]  .~  )
10910, 108sylan 471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  (
( invg `  G ) `  ( U `  i )
)  =  [ <"
<. i ,  1o >. "> ]  .~  )
110109adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  (
( invg `  G ) `  ( U `  i )
)  =  [ <"
<. i ,  1o >. "> ]  .~  )
111107, 110eqtr4d 2511 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  [ <"
<. i ,  j >. "> ]  .~  =  ( ( invg `  G ) `  ( U `  i )
) )
112111fveq2d 5868 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  ( K `  [ <" <. i ,  j >. "> ]  .~  )  =  ( K `  ( ( invg `  G
) `  ( U `  i ) ) ) )
11398, 104, 1123eqtr4d 2518 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
11490, 113jaodan 783 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  i  e.  I )  /\  (
j  =  (/)  \/  j  =  1o ) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
11568, 114sylan2 474 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  i  e.  I )  /\  j  e.  2o )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
116115anasss 647 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
11765, 116eqtrd 2508 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  -> 
( i T j )  =  ( K `
 [ <" <. i ,  j >. "> ]  .~  ) )
118 fveq2 5864 . . . . . . . . . . . . . . 15  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( T `  ( t `  n
) )  =  ( T `  <. i ,  j >. )
)
119 df-ov 6285 . . . . . . . . . . . . . . 15  |-  ( i T j )  =  ( T `  <. i ,  j >. )
120118, 119syl6eqr 2526 . . . . . . . . . . . . . 14  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( T `  ( t `  n
) )  =  ( i T j ) )
121 s1eq 12571 . . . . . . . . . . . . . . . 16  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  <" ( t `
 n ) ">  =  <" <. i ,  j >. "> )
122121eceq1d 7345 . . . . . . . . . . . . . . 15  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  [ <" (
t `  n ) "> ]  .~  =  [ <" <. i ,  j >. "> ]  .~  )
123122fveq2d 5868 . . . . . . . . . . . . . 14  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( K `  [ <" ( t `
 n ) "> ]  .~  )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
124120, 123eqeq12d 2489 . . . . . . . . . . . . 13  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( ( T `
 ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  )  <->  ( i T j )  =  ( K `  [ <" <. i ,  j
>. "> ]  .~  ) ) )
125117, 124syl5ibrcom 222 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  -> 
( ( t `  n )  =  <. i ,  j >.  ->  ( T `  ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  ) ) )
126125rexlimdvva 2962 . . . . . . . . . . 11  |-  ( ph  ->  ( E. i  e.  I  E. j  e.  2o  ( t `  n )  =  <. i ,  j >.  ->  ( T `  ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  ) ) )
127126ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  ( E. i  e.  I  E. j  e.  2o  ( t `  n )  =  <. i ,  j >.  ->  ( T `  ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  ) ) )
12855, 127mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  ( T `  ( t `  n
) )  =  ( K `  [ <" ( t `  n
) "> ]  .~  ) )
129128mpteq2dva 4533 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
n  e.  ( 0..^ ( # `  t
) )  |->  ( T `
 ( t `  n ) ) )  =  ( n  e.  ( 0..^ ( # `  t ) )  |->  ( K `  [ <" ( t `  n
) "> ]  .~  ) ) )
1303, 7, 8, 9, 10, 11frgpuptf 16584 . . . . . . . . . 10  |-  ( ph  ->  T : ( I  X.  2o ) --> B )
131130adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  T : ( I  X.  2o ) --> B )
132 fcompt 6055 . . . . . . . . 9  |-  ( ( T : ( I  X.  2o ) --> B  /\  t : ( 0..^ ( # `  t
) ) --> ( I  X.  2o ) )  ->  ( T  o.  t )  =  ( n  e.  ( 0..^ ( # `  t
) )  |->  ( T `
 ( t `  n ) ) ) )
133131, 52, 132syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  ( T  o.  t )  =  ( n  e.  ( 0..^ ( # `  t ) )  |->  ( T `  ( t `
 n ) ) ) )
13453s1cld 12574 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  <" ( t `
 n ) ">  e. Word  ( I  X.  2o ) )
13529ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  W  = Word  (
I  X.  2o ) )
136134, 135eleqtrrd 2558 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  <" ( t `
 n ) ">  e.  W )
13714, 13, 12, 2frgpeccl 16575 . . . . . . . . . 10  |-  ( <" ( t `  n ) ">  e.  W  ->  [ <" ( t `  n
) "> ]  .~  e.  X )
138136, 137syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  [ <" (
t `  n ) "> ]  .~  e.  X )
13952feqmptd 5918 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  t  =  ( n  e.  ( 0..^ ( # `  t ) )  |->  ( t `  n ) ) )
14010adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  W )  ->  I  e.  V )
141140, 23, 24sylancl 662 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  W )  ->  (
I  X.  2o )  e.  _V )
142 eqid 2467 . . . . . . . . . . . . 13  |-  (varFMnd `  (
I  X.  2o ) )  =  (varFMnd `  (
I  X.  2o ) )
143142vrmdfval 15847 . . . . . . . . . . . 12  |-  ( ( I  X.  2o )  e.  _V  ->  (varFMnd `  (
I  X.  2o ) )  =  ( w  e.  ( I  X.  2o )  |->  <" w "> ) )
144141, 143syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  (varFMnd `  (
I  X.  2o ) )  =  ( w  e.  ( I  X.  2o )  |->  <" w "> ) )
145 s1eq 12571 . . . . . . . . . . 11  |-  ( w  =  ( t `  n )  ->  <" w ">  =  <" (
t `  n ) "> )
14653, 139, 144, 145fmptco 6052 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  =  ( n  e.  ( 0..^ (
# `  t )
)  |->  <" ( t `
 n ) "> ) )
147 eqidd 2468 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  )  =  ( w  e.  W  |->  [ w ]  .~  ) )
148 eceq1 7344 . . . . . . . . . 10  |-  ( w  =  <" ( t `
 n ) ">  ->  [ w ]  .~  =  [ <" ( t `  n
) "> ]  .~  )
149136, 146, 147, 148fmptco 6052 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) )  =  ( n  e.  ( 0..^ (
# `  t )
)  |->  [ <" (
t `  n ) "> ]  .~  )
)
1501adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  K  e.  ( G  GrpHom  H ) )
151150, 4syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  K : X --> B )
152151feqmptd 5918 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  K  =  ( w  e.  X  |->  ( K `  w ) ) )
153 fveq2 5864 . . . . . . . . 9  |-  ( w  =  [ <" (
t `  n ) "> ]  .~  ->  ( K `  w )  =  ( K `  [ <" ( t `
 n ) "> ]  .~  )
)
154138, 149, 152, 153fmptco 6052 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  ( K  o.  ( (
w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( n  e.  ( 0..^ ( # `  t
) )  |->  ( K `
 [ <" (
t `  n ) "> ]  .~  )
) )
155129, 133, 1543eqtr4d 2518 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  ( T  o.  t )  =  ( K  o.  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )
156155oveq2d 6298 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( H  gsumg  ( T  o.  t
) )  =  ( H  gsumg  ( K  o.  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) ) )
1573, 7, 8, 9, 10, 11, 12, 13, 14, 2, 15frgpupval 16588 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( E `  [ t ]  .~  )  =  ( H  gsumg  ( T  o.  t
) ) )
158 ghmmhm 16072 . . . . . . . 8  |-  ( K  e.  ( G  GrpHom  H )  ->  K  e.  ( G MndHom  H ) )
159150, 158syl 16 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  K  e.  ( G MndHom  H ) )
160142vrmdf 15849 . . . . . . . . . . 11  |-  ( ( I  X.  2o )  e.  _V  ->  (varFMnd `  (
I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) )
161141, 160syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (varFMnd `  (
I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) )
162 feq3 5713 . . . . . . . . . . 11  |-  ( W  = Word  ( I  X.  2o )  ->  ( (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) --> W  <->  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) ) )
16349, 162syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) --> W  <->  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) ) )
164161, 163mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (varFMnd `  (
I  X.  2o ) ) : ( I  X.  2o ) --> W )
165 wrdco 12756 . . . . . . . . 9  |-  ( ( t  e. Word  ( I  X.  2o )  /\  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) --> W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  W )
16650, 164, 165syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  W )
16733adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  W )  ->  W  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
168167mpteq1d 4528 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  )  =  ( w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  |->  [ w ]  .~  )
)
169 eqid 2467 . . . . . . . . . . . . 13  |-  ( w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  |->  [ w ]  .~  )  =  ( w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  |->  [ w ]  .~  )
17020, 30, 14, 13, 169frgpmhm 16579 . . . . . . . . . . . 12  |-  ( I  e.  V  ->  (
w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) 
|->  [ w ]  .~  )  e.  ( (freeMnd `  ( I  X.  2o ) ) MndHom  G ) )
171140, 170syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) 
|->  [ w ]  .~  )  e.  ( (freeMnd `  ( I  X.  2o ) ) MndHom  G ) )
172168, 171eqeltrd 2555 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  )  e.  ( (freeMnd `  (
I  X.  2o ) ) MndHom  G ) )
17330, 2mhmf 15782 . . . . . . . . . 10  |-  ( ( w  e.  W  |->  [ w ]  .~  )  e.  ( (freeMnd `  (
I  X.  2o ) ) MndHom  G )  -> 
( w  e.  W  |->  [ w ]  .~  ) : ( Base `  (freeMnd `  ( I  X.  2o ) ) ) --> X )
174172, 173syl 16 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  ) : ( Base `  (freeMnd `  ( I  X.  2o ) ) ) --> X )
175167feq2d 5716 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) : W --> X  <->  ( w  e.  W  |->  [ w ]  .~  ) : (
Base `  (freeMnd `  (
I  X.  2o ) ) ) --> X ) )
176174, 175mpbird 232 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  ) : W --> X )
177 wrdco 12756 . . . . . . . 8  |-  ( ( ( (varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  W  /\  ( w  e.  W  |->  [ w ]  .~  ) : W --> X )  ->  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) )  e. Word  X
)
178166, 176, 177syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) )  e. Word  X )
1792gsumwmhm 15836 . . . . . . 7  |-  ( ( K  e.  ( G MndHom  H )  /\  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) )  e. Word  X )  ->  ( K `  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )  =  ( H  gsumg  ( K  o.  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) ) )
180159, 178, 179syl2anc 661 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( K `  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) )  =  ( H  gsumg  ( K  o.  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) ) )
181156, 157, 1803eqtr4d 2518 . . . . 5  |-  ( (
ph  /\  t  e.  W )  ->  ( E `  [ t ]  .~  )  =  ( K `  ( G 
gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) ) )
18220, 142frmdgsum 15853 . . . . . . . . 9  |-  ( ( ( I  X.  2o )  e.  _V  /\  t  e. Word  ( I  X.  2o ) )  ->  (
(freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) )  =  t )
183141, 50, 182syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
(freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) )  =  t )
184183fveq2d 5868 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) `  ( (freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( ( w  e.  W  |->  [ w ]  .~  ) `  t ) )
185 wrdco 12756 . . . . . . . . . 10  |-  ( ( t  e. Word  ( I  X.  2o )  /\  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word Word  ( I  X.  2o ) )
18650, 161, 185syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word Word  ( I  X.  2o ) )
18732adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
188 wrdeq 12526 . . . . . . . . . 10  |-  ( (
Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o )  -> Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word Word  ( I  X.  2o ) )
189187, 188syl 16 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  -> Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word Word  ( I  X.  2o ) )
190186, 189eleqtrrd 2558 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
19130gsumwmhm 15836 . . . . . . . 8  |-  ( ( ( w  e.  W  |->  [ w ]  .~  )  e.  ( (freeMnd `  ( I  X.  2o ) ) MndHom  G )  /\  ( (varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )  ->  ( (
w  e.  W  |->  [ w ]  .~  ) `  ( (freeMnd `  (
I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )
192172, 190, 191syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) `  ( (freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )
19312, 13efger 16532 . . . . . . . . 9  |-  .~  Er  W
194193a1i 11 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  .~  Er  W )
195 fvex 5874 . . . . . . . . . 10  |-  (  _I 
` Word  ( I  X.  2o ) )  e.  _V
19612, 195eqeltri 2551 . . . . . . . . 9  |-  W  e. 
_V
197196a1i 11 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  W  e.  _V )
198 eqid 2467 . . . . . . . 8  |-  ( w  e.  W  |->  [ w ]  .~  )  =  ( w  e.  W  |->  [ w ]  .~  )
199194, 197, 198divsfval 14798 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) `  t )  =  [ t ]  .~  )
200184, 192, 1993eqtr3d 2516 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  [ t ]  .~  )
201200fveq2d 5868 . . . . 5  |-  ( (
ph  /\  t  e.  W )  ->  ( K `  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) )  =  ( K `  [
t ]  .~  )
)
202181, 201eqtr2d 2509 . . . 4  |-  ( (
ph  /\  t  e.  W )  ->  ( K `  [ t ]  .~  )  =  ( E `  [ t ]  .~  ) )
20344, 47, 202ectocld 7375 . . 3  |-  ( (
ph  /\  a  e.  ( W /.  .~  )
)  ->  ( K `  a )  =  ( E `  a ) )
20443, 203syldan 470 . 2  |-  ( (
ph  /\  a  e.  X )  ->  ( K `  a )  =  ( E `  a ) )
2056, 19, 204eqfnfvd 5976 1  |-  ( ph  ->  K  =  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815   _Vcvv 3113    C_ wss 3476   (/)c0 3785   ifcif 3939   {cpr 4029   <.cop 4033    |-> cmpt 4505    _I cid 4790   Oncon0 4878    X. cxp 4997   ran crn 5000    o. ccom 5003    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   1oc1o 7120   2oc2o 7121    Er wer 7305   [cec 7306   /.cqs 7307   0cc0 9488  ..^cfzo 11788   #chash 12369  Word cword 12496   <"cs1 12499   Basecbs 14486    gsumg cgsu 14692    /.s cqus 14756   Grpcgrp 15723   invgcminusg 15724   MndHom cmhm 15775  freeMndcfrmd 15838  varFMndcvrmd 15839    GrpHom cghm 16059   ~FG cefg 16520  freeGrpcfrgp 16521  varFGrpcvrgp 16522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-ot 4036  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-ec 7310  df-qs 7314  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-fz 11669  df-fzo 11789  df-seq 12072  df-hash 12370  df-word 12504  df-concat 12506  df-s1 12507  df-substr 12508  df-splice 12509  df-reverse 12510  df-s2 12772  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-0g 14693  df-gsum 14694  df-imas 14759  df-divs 14760  df-mnd 15728  df-mhm 15777  df-submnd 15778  df-frmd 15840  df-vrmd 15841  df-grp 15858  df-minusg 15859  df-ghm 16060  df-efg 16523  df-frgp 16524  df-vrgp 16525
This theorem is referenced by:  frgpup3  16592
  Copyright terms: Public domain W3C validator