MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup3lem Structured version   Unicode version

Theorem frgpup3lem 16267
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup.b  |-  B  =  ( Base `  H
)
frgpup.n  |-  N  =  ( invg `  H )
frgpup.t  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
frgpup.h  |-  ( ph  ->  H  e.  Grp )
frgpup.i  |-  ( ph  ->  I  e.  V )
frgpup.a  |-  ( ph  ->  F : I --> B )
frgpup.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
frgpup.r  |-  .~  =  ( ~FG  `  I )
frgpup.g  |-  G  =  (freeGrp `  I )
frgpup.x  |-  X  =  ( Base `  G
)
frgpup.e  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
frgpup.u  |-  U  =  (varFGrp `  I )
frgpup3.k  |-  ( ph  ->  K  e.  ( G 
GrpHom  H ) )
frgpup3.e  |-  ( ph  ->  ( K  o.  U
)  =  F )
Assertion
Ref Expression
frgpup3lem  |-  ( ph  ->  K  =  E )
Distinct variable groups:    y, g,
z    g, H    y, F, z    y, N, z    B, g, y, z    T, g    .~ , g    ph, g, y, z    y, I, z   
g, W
Allowed substitution hints:    .~ ( y, z)    T( y, z)    U( y, z, g)    E( y, z, g)    F( g)    G( y, z, g)    H( y, z)    I( g)    K( y, z, g)    N( g)    V( y, z, g)    W( y, z)    X( y, z, g)

Proof of Theorem frgpup3lem
Dummy variables  a 
t  n  i  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup3.k . . 3  |-  ( ph  ->  K  e.  ( G 
GrpHom  H ) )
2 frgpup.x . . . 4  |-  X  =  ( Base `  G
)
3 frgpup.b . . . 4  |-  B  =  ( Base `  H
)
42, 3ghmf 15744 . . 3  |-  ( K  e.  ( G  GrpHom  H )  ->  K : X
--> B )
5 ffn 5556 . . 3  |-  ( K : X --> B  ->  K  Fn  X )
61, 4, 53syl 20 . 2  |-  ( ph  ->  K  Fn  X )
7 frgpup.n . . . 4  |-  N  =  ( invg `  H )
8 frgpup.t . . . 4  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
9 frgpup.h . . . 4  |-  ( ph  ->  H  e.  Grp )
10 frgpup.i . . . 4  |-  ( ph  ->  I  e.  V )
11 frgpup.a . . . 4  |-  ( ph  ->  F : I --> B )
12 frgpup.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
13 frgpup.r . . . 4  |-  .~  =  ( ~FG  `  I )
14 frgpup.g . . . 4  |-  G  =  (freeGrp `  I )
15 frgpup.e . . . 4  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
163, 7, 8, 9, 10, 11, 12, 13, 14, 2, 15frgpup1 16265 . . 3  |-  ( ph  ->  E  e.  ( G 
GrpHom  H ) )
172, 3ghmf 15744 . . 3  |-  ( E  e.  ( G  GrpHom  H )  ->  E : X
--> B )
18 ffn 5556 . . 3  |-  ( E : X --> B  ->  E  Fn  X )
1916, 17, 183syl 20 . 2  |-  ( ph  ->  E  Fn  X )
20 eqid 2441 . . . . . . . . 9  |-  (freeMnd `  (
I  X.  2o ) )  =  (freeMnd `  (
I  X.  2o ) )
2114, 20, 13frgpval 16248 . . . . . . . 8  |-  ( I  e.  V  ->  G  =  ( (freeMnd `  (
I  X.  2o ) )  /.s 
.~  ) )
2210, 21syl 16 . . . . . . 7  |-  ( ph  ->  G  =  ( (freeMnd `  ( I  X.  2o ) )  /.s  .~  )
)
23 2on 6924 . . . . . . . . . . 11  |-  2o  e.  On
24 xpexg 6506 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
2510, 23, 24sylancl 657 . . . . . . . . . 10  |-  ( ph  ->  ( I  X.  2o )  e.  _V )
26 wrdexg 12240 . . . . . . . . . 10  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
27 fvi 5745 . . . . . . . . . 10  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
2825, 26, 273syl 20 . . . . . . . . 9  |-  ( ph  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o ) )
2912, 28syl5eq 2485 . . . . . . . 8  |-  ( ph  ->  W  = Word  ( I  X.  2o ) )
30 eqid 2441 . . . . . . . . . 10  |-  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) )
3120, 30frmdbas 15523 . . . . . . . . 9  |-  ( ( I  X.  2o )  e.  _V  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
3225, 31syl 16 . . . . . . . 8  |-  ( ph  ->  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word  ( I  X.  2o ) )
3329, 32eqtr4d 2476 . . . . . . 7  |-  ( ph  ->  W  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
34 fvex 5698 . . . . . . . . 9  |-  ( ~FG  `  I
)  e.  _V
3513, 34eqeltri 2511 . . . . . . . 8  |-  .~  e.  _V
3635a1i 11 . . . . . . 7  |-  ( ph  ->  .~  e.  _V )
37 fvex 5698 . . . . . . . 8  |-  (freeMnd `  (
I  X.  2o ) )  e.  _V
3837a1i 11 . . . . . . 7  |-  ( ph  ->  (freeMnd `  ( I  X.  2o ) )  e. 
_V )
3922, 33, 36, 38divsbas 14479 . . . . . 6  |-  ( ph  ->  ( W /.  .~  )  =  ( Base `  G ) )
4039, 2syl6reqr 2492 . . . . 5  |-  ( ph  ->  X  =  ( W /.  .~  ) )
41 eqimss 3405 . . . . 5  |-  ( X  =  ( W /.  .~  )  ->  X  C_  ( W /.  .~  ) )
4240, 41syl 16 . . . 4  |-  ( ph  ->  X  C_  ( W /.  .~  ) )
4342sselda 3353 . . 3  |-  ( (
ph  /\  a  e.  X )  ->  a  e.  ( W /.  .~  ) )
44 eqid 2441 . . . 4  |-  ( W /.  .~  )  =  ( W /.  .~  )
45 fveq2 5688 . . . . 5  |-  ( [ t ]  .~  =  a  ->  ( K `  [ t ]  .~  )  =  ( K `  a ) )
46 fveq2 5688 . . . . 5  |-  ( [ t ]  .~  =  a  ->  ( E `  [ t ]  .~  )  =  ( E `  a ) )
4745, 46eqeq12d 2455 . . . 4  |-  ( [ t ]  .~  =  a  ->  ( ( K `
 [ t ]  .~  )  =  ( E `  [ t ]  .~  )  <->  ( K `  a )  =  ( E `  a ) ) )
48 simpr 458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  W )  ->  t  e.  W )
4929adantr 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  W )  ->  W  = Word  ( I  X.  2o ) )
5048, 49eleqtrd 2517 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  W )  ->  t  e. Word  ( I  X.  2o ) )
51 wrdf 12236 . . . . . . . . . . . . 13  |-  ( t  e. Word  ( I  X.  2o )  ->  t : ( 0..^ ( # `  t ) ) --> ( I  X.  2o ) )
5250, 51syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  W )  ->  t : ( 0..^ (
# `  t )
) --> ( I  X.  2o ) )
5352ffvelrnda 5840 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  ( t `  n )  e.  ( I  X.  2o ) )
54 elxp2 4854 . . . . . . . . . . 11  |-  ( ( t `  n )  e.  ( I  X.  2o )  <->  E. i  e.  I  E. j  e.  2o  ( t `  n
)  =  <. i ,  j >. )
5553, 54sylib 196 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  E. i  e.  I  E. j  e.  2o  ( t `  n
)  =  <. i ,  j >. )
56 fveq2 5688 . . . . . . . . . . . . . . . . 17  |-  ( y  =  i  ->  ( F `  y )  =  ( F `  i ) )
5756fveq2d 5692 . . . . . . . . . . . . . . . . 17  |-  ( y  =  i  ->  ( N `  ( F `  y ) )  =  ( N `  ( F `  i )
) )
5856, 57ifeq12d 3806 . . . . . . . . . . . . . . . 16  |-  ( y  =  i  ->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) )  =  if ( z  =  (/) ,  ( F `
 i ) ,  ( N `  ( F `  i )
) ) )
59 eqeq1 2447 . . . . . . . . . . . . . . . . 17  |-  ( z  =  j  ->  (
z  =  (/)  <->  j  =  (/) ) )
6059ifbid 3808 . . . . . . . . . . . . . . . 16  |-  ( z  =  j  ->  if ( z  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  if ( j  =  (/) ,  ( F `
 i ) ,  ( N `  ( F `  i )
) ) )
61 fvex 5698 . . . . . . . . . . . . . . . . 17  |-  ( F `
 i )  e. 
_V
62 fvex 5698 . . . . . . . . . . . . . . . . 17  |-  ( N `
 ( F `  i ) )  e. 
_V
6361, 62ifex 3855 . . . . . . . . . . . . . . . 16  |-  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) )  e.  _V
6458, 60, 8, 63ovmpt2 6225 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  I  /\  j  e.  2o )  ->  ( i T j )  =  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) ) )
6564adantl 463 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  -> 
( i T j )  =  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) ) )
66 elpri 3894 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  { (/) ,  1o }  ->  ( j  =  (/)  \/  j  =  1o ) )
67 df2o3 6929 . . . . . . . . . . . . . . . . 17  |-  2o  =  { (/) ,  1o }
6866, 67eleq2s 2533 . . . . . . . . . . . . . . . 16  |-  ( j  e.  2o  ->  (
j  =  (/)  \/  j  =  1o ) )
69 frgpup3.e . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( K  o.  U
)  =  F )
7069adantr 462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  ( K  o.  U )  =  F )
7170fveq1d 5690 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  (
( K  o.  U
) `  i )  =  ( F `  i ) )
72 frgpup.u . . . . . . . . . . . . . . . . . . . . . . 23  |-  U  =  (varFGrp `  I )
7313, 72, 14, 2vrgpf 16258 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( I  e.  V  ->  U : I --> X )
7410, 73syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  U : I --> X )
75 fvco3 5765 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( U : I --> X  /\  i  e.  I )  ->  ( ( K  o.  U ) `  i
)  =  ( K `
 ( U `  i ) ) )
7674, 75sylan 468 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  (
( K  o.  U
) `  i )  =  ( K `  ( U `  i ) ) )
7771, 76eqtr3d 2475 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  I )  ->  ( F `  i )  =  ( K `  ( U `  i ) ) )
7877adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  ( F `  i )  =  ( K `  ( U `  i ) ) )
79 iftrue 3794 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  (/)  ->  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) )  =  ( F `  i ) )
8079adantl 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( F `  i ) )
81 simpr 458 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  j  =  (/) )
8281opeq2d 4063 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  <. i ,  j >.  =  <. i ,  (/) >. )
8382s1eqd 12288 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  <" <. i ,  j >. ">  =  <" <. i ,  (/) >. "> )
84 eceq1 7133 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <" <. i ,  j
>. ">  =  <"
<. i ,  (/) >. ">  ->  [ <" <. i ,  j >. "> ]  .~  =  [ <"
<. i ,  (/) >. "> ]  .~  )
8583, 84syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  [ <"
<. i ,  j >. "> ]  .~  =  [ <" <. i ,  (/) >. "> ]  .~  )
8613, 72vrgpval 16257 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  V  /\  i  e.  I )  ->  ( U `  i
)  =  [ <"
<. i ,  (/) >. "> ]  .~  )
8710, 86sylan 468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  ( U `  i )  =  [ <" <. i ,  (/) >. "> ]  .~  )
8887adantr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  ( U `  i )  =  [ <" <. i ,  (/) >. "> ]  .~  )
8985, 88eqtr4d 2476 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  [ <"
<. i ,  j >. "> ]  .~  =  ( U `  i ) )
9089fveq2d 5692 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  ( K `  [ <" <. i ,  j >. "> ]  .~  )  =  ( K `  ( U `
 i ) ) )
9178, 80, 903eqtr4d 2483 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
9277fveq2d 5692 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  ( N `  ( F `  i ) )  =  ( N `  ( K `  ( U `  i ) ) ) )
931adantr 462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  K  e.  ( G  GrpHom  H ) )
9474ffvelrnda 5840 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  ( U `  i )  e.  X )
95 eqid 2441 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( invg `  G )  =  ( invg `  G )
962, 95, 7ghminv 15747 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  ( G 
GrpHom  H )  /\  ( U `  i )  e.  X )  ->  ( K `  ( ( invg `  G ) `
 ( U `  i ) ) )  =  ( N `  ( K `  ( U `
 i ) ) ) )
9793, 94, 96syl2anc 656 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  ( K `  ( ( invg `  G ) `
 ( U `  i ) ) )  =  ( N `  ( K `  ( U `
 i ) ) ) )
9892, 97eqtr4d 2476 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  I )  ->  ( N `  ( F `  i ) )  =  ( K `  (
( invg `  G ) `  ( U `  i )
) ) )
9998adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  ( N `  ( F `  i ) )  =  ( K `  (
( invg `  G ) `  ( U `  i )
) ) )
100 1n0 6931 . . . . . . . . . . . . . . . . . . . 20  |-  1o  =/=  (/)
101 simpr 458 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  j  =  1o )
102101neeq1d 2619 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  (
j  =/=  (/)  <->  1o  =/=  (/) ) )
103100, 102mpbiri 233 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  j  =/=  (/) )
104 ifnefalse 3798 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =/=  (/)  ->  if (
j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) )  =  ( N `  ( F `
 i ) ) )
105103, 104syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( N `  ( F `  i ) ) )
106101opeq2d 4063 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  <. i ,  j >.  =  <. i ,  1o >. )
107106s1eqd 12288 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  <" <. i ,  j >. ">  =  <" <. i ,  1o >. "> )
108 eceq1 7133 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <" <. i ,  j
>. ">  =  <"
<. i ,  1o >. ">  ->  [ <" <. i ,  j >. "> ]  .~  =  [ <"
<. i ,  1o >. "> ]  .~  )
109107, 108syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  [ <"
<. i ,  j >. "> ]  .~  =  [ <" <. i ,  1o >. "> ]  .~  )
11013, 72, 14, 95vrgpinv 16259 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  V  /\  i  e.  I )  ->  ( ( invg `  G ) `  ( U `  i )
)  =  [ <"
<. i ,  1o >. "> ]  .~  )
11110, 110sylan 468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  (
( invg `  G ) `  ( U `  i )
)  =  [ <"
<. i ,  1o >. "> ]  .~  )
112111adantr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  (
( invg `  G ) `  ( U `  i )
)  =  [ <"
<. i ,  1o >. "> ]  .~  )
113109, 112eqtr4d 2476 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  [ <"
<. i ,  j >. "> ]  .~  =  ( ( invg `  G ) `  ( U `  i )
) )
114113fveq2d 5692 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  ( K `  [ <" <. i ,  j >. "> ]  .~  )  =  ( K `  ( ( invg `  G
) `  ( U `  i ) ) ) )
11599, 105, 1143eqtr4d 2483 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
11691, 115jaodan 778 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  i  e.  I )  /\  (
j  =  (/)  \/  j  =  1o ) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
11768, 116sylan2 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  i  e.  I )  /\  j  e.  2o )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
118117anasss 642 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
11965, 118eqtrd 2473 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  -> 
( i T j )  =  ( K `
 [ <" <. i ,  j >. "> ]  .~  ) )
120 fveq2 5688 . . . . . . . . . . . . . . 15  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( T `  ( t `  n
) )  =  ( T `  <. i ,  j >. )
)
121 df-ov 6093 . . . . . . . . . . . . . . 15  |-  ( i T j )  =  ( T `  <. i ,  j >. )
122120, 121syl6eqr 2491 . . . . . . . . . . . . . 14  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( T `  ( t `  n
) )  =  ( i T j ) )
123 s1eq 12287 . . . . . . . . . . . . . . . 16  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  <" ( t `
 n ) ">  =  <" <. i ,  j >. "> )
124 eceq1 7133 . . . . . . . . . . . . . . . 16  |-  ( <" ( t `  n ) ">  =  <" <. i ,  j >. ">  ->  [ <" (
t `  n ) "> ]  .~  =  [ <" <. i ,  j >. "> ]  .~  )
125123, 124syl 16 . . . . . . . . . . . . . . 15  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  [ <" (
t `  n ) "> ]  .~  =  [ <" <. i ,  j >. "> ]  .~  )
126125fveq2d 5692 . . . . . . . . . . . . . 14  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( K `  [ <" ( t `
 n ) "> ]  .~  )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
127122, 126eqeq12d 2455 . . . . . . . . . . . . 13  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( ( T `
 ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  )  <->  ( i T j )  =  ( K `  [ <" <. i ,  j
>. "> ]  .~  ) ) )
128119, 127syl5ibrcom 222 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  -> 
( ( t `  n )  =  <. i ,  j >.  ->  ( T `  ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  ) ) )
129128rexlimdvva 2846 . . . . . . . . . . 11  |-  ( ph  ->  ( E. i  e.  I  E. j  e.  2o  ( t `  n )  =  <. i ,  j >.  ->  ( T `  ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  ) ) )
130129ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  ( E. i  e.  I  E. j  e.  2o  ( t `  n )  =  <. i ,  j >.  ->  ( T `  ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  ) ) )
13155, 130mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  ( T `  ( t `  n
) )  =  ( K `  [ <" ( t `  n
) "> ]  .~  ) )
132131mpteq2dva 4375 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
n  e.  ( 0..^ ( # `  t
) )  |->  ( T `
 ( t `  n ) ) )  =  ( n  e.  ( 0..^ ( # `  t ) )  |->  ( K `  [ <" ( t `  n
) "> ]  .~  ) ) )
1333, 7, 8, 9, 10, 11frgpuptf 16260 . . . . . . . . . 10  |-  ( ph  ->  T : ( I  X.  2o ) --> B )
134133adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  T : ( I  X.  2o ) --> B )
135 fcompt 5876 . . . . . . . . 9  |-  ( ( T : ( I  X.  2o ) --> B  /\  t : ( 0..^ ( # `  t
) ) --> ( I  X.  2o ) )  ->  ( T  o.  t )  =  ( n  e.  ( 0..^ ( # `  t
) )  |->  ( T `
 ( t `  n ) ) ) )
136134, 52, 135syl2anc 656 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  ( T  o.  t )  =  ( n  e.  ( 0..^ ( # `  t ) )  |->  ( T `  ( t `
 n ) ) ) )
13753s1cld 12290 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  <" ( t `
 n ) ">  e. Word  ( I  X.  2o ) )
13829ad2antrr 720 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  W  = Word  (
I  X.  2o ) )
139137, 138eleqtrrd 2518 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  <" ( t `
 n ) ">  e.  W )
14014, 13, 12, 2frgpeccl 16251 . . . . . . . . . 10  |-  ( <" ( t `  n ) ">  e.  W  ->  [ <" ( t `  n
) "> ]  .~  e.  X )
141139, 140syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  [ <" (
t `  n ) "> ]  .~  e.  X )
14252feqmptd 5741 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  t  =  ( n  e.  ( 0..^ ( # `  t ) )  |->  ( t `  n ) ) )
14310adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  W )  ->  I  e.  V )
144143, 23, 24sylancl 657 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  W )  ->  (
I  X.  2o )  e.  _V )
145 eqid 2441 . . . . . . . . . . . . 13  |-  (varFMnd `  (
I  X.  2o ) )  =  (varFMnd `  (
I  X.  2o ) )
146145vrmdfval 15527 . . . . . . . . . . . 12  |-  ( ( I  X.  2o )  e.  _V  ->  (varFMnd `  (
I  X.  2o ) )  =  ( w  e.  ( I  X.  2o )  |->  <" w "> ) )
147144, 146syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  (varFMnd `  (
I  X.  2o ) )  =  ( w  e.  ( I  X.  2o )  |->  <" w "> ) )
148 s1eq 12287 . . . . . . . . . . 11  |-  ( w  =  ( t `  n )  ->  <" w ">  =  <" (
t `  n ) "> )
14953, 142, 147, 148fmptco 5873 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  =  ( n  e.  ( 0..^ (
# `  t )
)  |->  <" ( t `
 n ) "> ) )
150 eqidd 2442 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  )  =  ( w  e.  W  |->  [ w ]  .~  ) )
151 eceq1 7133 . . . . . . . . . 10  |-  ( w  =  <" ( t `
 n ) ">  ->  [ w ]  .~  =  [ <" ( t `  n
) "> ]  .~  )
152139, 149, 150, 151fmptco 5873 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) )  =  ( n  e.  ( 0..^ (
# `  t )
)  |->  [ <" (
t `  n ) "> ]  .~  )
)
1531adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  K  e.  ( G  GrpHom  H ) )
154153, 4syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  K : X --> B )
155154feqmptd 5741 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  K  =  ( w  e.  X  |->  ( K `  w ) ) )
156 fveq2 5688 . . . . . . . . 9  |-  ( w  =  [ <" (
t `  n ) "> ]  .~  ->  ( K `  w )  =  ( K `  [ <" ( t `
 n ) "> ]  .~  )
)
157141, 152, 155, 156fmptco 5873 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  ( K  o.  ( (
w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( n  e.  ( 0..^ ( # `  t
) )  |->  ( K `
 [ <" (
t `  n ) "> ]  .~  )
) )
158132, 136, 1573eqtr4d 2483 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  ( T  o.  t )  =  ( K  o.  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )
159158oveq2d 6106 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( H  gsumg  ( T  o.  t
) )  =  ( H  gsumg  ( K  o.  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) ) )
1603, 7, 8, 9, 10, 11, 12, 13, 14, 2, 15frgpupval 16264 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( E `  [ t ]  .~  )  =  ( H  gsumg  ( T  o.  t
) ) )
161 ghmmhm 15750 . . . . . . . 8  |-  ( K  e.  ( G  GrpHom  H )  ->  K  e.  ( G MndHom  H ) )
162153, 161syl 16 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  K  e.  ( G MndHom  H ) )
163145vrmdf 15529 . . . . . . . . . . 11  |-  ( ( I  X.  2o )  e.  _V  ->  (varFMnd `  (
I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) )
164144, 163syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (varFMnd `  (
I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) )
165 feq3 5541 . . . . . . . . . . 11  |-  ( W  = Word  ( I  X.  2o )  ->  ( (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) --> W  <->  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) ) )
16649, 165syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) --> W  <->  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) ) )
167164, 166mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (varFMnd `  (
I  X.  2o ) ) : ( I  X.  2o ) --> W )
168 wrdco 12455 . . . . . . . . 9  |-  ( ( t  e. Word  ( I  X.  2o )  /\  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) --> W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  W )
16950, 167, 168syl2anc 656 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  W )
17033adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  W )  ->  W  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
171170mpteq1d 4370 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  )  =  ( w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  |->  [ w ]  .~  )
)
172 eqid 2441 . . . . . . . . . . . . 13  |-  ( w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  |->  [ w ]  .~  )  =  ( w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  |->  [ w ]  .~  )
17320, 30, 14, 13, 172frgpmhm 16255 . . . . . . . . . . . 12  |-  ( I  e.  V  ->  (
w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) 
|->  [ w ]  .~  )  e.  ( (freeMnd `  ( I  X.  2o ) ) MndHom  G ) )
174143, 173syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) 
|->  [ w ]  .~  )  e.  ( (freeMnd `  ( I  X.  2o ) ) MndHom  G ) )
175171, 174eqeltrd 2515 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  )  e.  ( (freeMnd `  (
I  X.  2o ) ) MndHom  G ) )
17630, 2mhmf 15465 . . . . . . . . . 10  |-  ( ( w  e.  W  |->  [ w ]  .~  )  e.  ( (freeMnd `  (
I  X.  2o ) ) MndHom  G )  -> 
( w  e.  W  |->  [ w ]  .~  ) : ( Base `  (freeMnd `  ( I  X.  2o ) ) ) --> X )
177175, 176syl 16 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  ) : ( Base `  (freeMnd `  ( I  X.  2o ) ) ) --> X )
178170feq2d 5544 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) : W --> X  <->  ( w  e.  W  |->  [ w ]  .~  ) : (
Base `  (freeMnd `  (
I  X.  2o ) ) ) --> X ) )
179177, 178mpbird 232 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  ) : W --> X )
180 wrdco 12455 . . . . . . . 8  |-  ( ( ( (varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  W  /\  ( w  e.  W  |->  [ w ]  .~  ) : W --> X )  ->  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) )  e. Word  X
)
181169, 179, 180syl2anc 656 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) )  e. Word  X )
1822gsumwmhm 15516 . . . . . . 7  |-  ( ( K  e.  ( G MndHom  H )  /\  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) )  e. Word  X )  ->  ( K `  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )  =  ( H  gsumg  ( K  o.  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) ) )
183162, 181, 182syl2anc 656 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( K `  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) )  =  ( H  gsumg  ( K  o.  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) ) )
184159, 160, 1833eqtr4d 2483 . . . . 5  |-  ( (
ph  /\  t  e.  W )  ->  ( E `  [ t ]  .~  )  =  ( K `  ( G 
gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) ) )
18520, 145frmdgsum 15533 . . . . . . . . 9  |-  ( ( ( I  X.  2o )  e.  _V  /\  t  e. Word  ( I  X.  2o ) )  ->  (
(freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) )  =  t )
186144, 50, 185syl2anc 656 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
(freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) )  =  t )
187186fveq2d 5692 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) `  ( (freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( ( w  e.  W  |->  [ w ]  .~  ) `  t ) )
188 wrdco 12455 . . . . . . . . . 10  |-  ( ( t  e. Word  ( I  X.  2o )  /\  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word Word  ( I  X.  2o ) )
18950, 164, 188syl2anc 656 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word Word  ( I  X.  2o ) )
19032adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
191 wrdeq 12247 . . . . . . . . . 10  |-  ( (
Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o )  -> Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word Word  ( I  X.  2o ) )
192190, 191syl 16 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  -> Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word Word  ( I  X.  2o ) )
193189, 192eleqtrrd 2518 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
19430gsumwmhm 15516 . . . . . . . 8  |-  ( ( ( w  e.  W  |->  [ w ]  .~  )  e.  ( (freeMnd `  ( I  X.  2o ) ) MndHom  G )  /\  ( (varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )  ->  ( (
w  e.  W  |->  [ w ]  .~  ) `  ( (freeMnd `  (
I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )
195175, 193, 194syl2anc 656 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) `  ( (freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )
19612, 13efger 16208 . . . . . . . . 9  |-  .~  Er  W
197196a1i 11 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  .~  Er  W )
198 fvex 5698 . . . . . . . . . 10  |-  (  _I 
` Word  ( I  X.  2o ) )  e.  _V
19912, 198eqeltri 2511 . . . . . . . . 9  |-  W  e. 
_V
200199a1i 11 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  W  e.  _V )
201 eqid 2441 . . . . . . . 8  |-  ( w  e.  W  |->  [ w ]  .~  )  =  ( w  e.  W  |->  [ w ]  .~  )
202197, 200, 201divsfval 14481 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) `  t )  =  [ t ]  .~  )
203187, 195, 2023eqtr3d 2481 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  [ t ]  .~  )
204203fveq2d 5692 . . . . 5  |-  ( (
ph  /\  t  e.  W )  ->  ( K `  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) )  =  ( K `  [
t ]  .~  )
)
205184, 204eqtr2d 2474 . . . 4  |-  ( (
ph  /\  t  e.  W )  ->  ( K `  [ t ]  .~  )  =  ( E `  [ t ]  .~  ) )
20644, 47, 205ectocld 7163 . . 3  |-  ( (
ph  /\  a  e.  ( W /.  .~  )
)  ->  ( K `  a )  =  ( E `  a ) )
20743, 206syldan 467 . 2  |-  ( (
ph  /\  a  e.  X )  ->  ( K `  a )  =  ( E `  a ) )
2086, 19, 207eqfnfvd 5797 1  |-  ( ph  ->  K  =  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   E.wrex 2714   _Vcvv 2970    C_ wss 3325   (/)c0 3634   ifcif 3788   {cpr 3876   <.cop 3880    e. cmpt 4347    _I cid 4627   Oncon0 4715    X. cxp 4834   ran crn 4837    o. ccom 4840    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090    e. cmpt2 6092   1oc1o 6909   2oc2o 6910    Er wer 7094   [cec 7095   /.cqs 7096   0cc0 9278  ..^cfzo 11544   #chash 12099  Word cword 12217   <"cs1 12220   Basecbs 14170    gsumg cgsu 14375    /.s cqus 14439   Grpcgrp 15406   invgcminusg 15407   MndHom cmhm 15458  freeMndcfrmd 15518  varFMndcvrmd 15519    GrpHom cghm 15737   ~FG cefg 16196  freeGrpcfrgp 16197  varFGrpcvrgp 16198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-ot 3883  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-ec 7099  df-qs 7103  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-fz 11434  df-fzo 11545  df-seq 11803  df-hash 12100  df-word 12225  df-concat 12227  df-s1 12228  df-substr 12229  df-splice 12230  df-reverse 12231  df-s2 12471  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-0g 14376  df-gsum 14377  df-imas 14442  df-divs 14443  df-mnd 15411  df-mhm 15460  df-submnd 15461  df-frmd 15520  df-vrmd 15521  df-grp 15538  df-minusg 15539  df-ghm 15738  df-efg 16199  df-frgp 16200  df-vrgp 16201
This theorem is referenced by:  frgpup3  16268
  Copyright terms: Public domain W3C validator