MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup3 Structured version   Unicode version

Theorem frgpup3 16400
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup3.g  |-  G  =  (freeGrp `  I )
frgpup3.b  |-  B  =  ( Base `  H
)
frgpup3.u  |-  U  =  (varFGrp `  I )
Assertion
Ref Expression
frgpup3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  E! m  e.  ( G  GrpHom  H ) ( m  o.  U
)  =  F )
Distinct variable groups:    B, m    m, F    m, G    m, H    m, I    U, m   
m, V

Proof of Theorem frgpup3
Dummy variables  g 
k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup3.b . . 3  |-  B  =  ( Base `  H
)
2 eqid 2454 . . 3  |-  ( invg `  H )  =  ( invg `  H )
3 eqid 2454 . . 3  |-  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y ) ,  ( ( invg `  H ) `
 ( F `  y ) ) ) )  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y ) ,  ( ( invg `  H ) `
 ( F `  y ) ) ) )
4 simp1 988 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  H  e.  Grp )
5 simp2 989 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  I  e.  V
)
6 simp3 990 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  F : I --> B )
7 eqid 2454 . . 3  |-  (  _I 
` Word  ( I  X.  2o ) )  =  (  _I  ` Word  ( I  X.  2o ) )
8 eqid 2454 . . 3  |-  ( ~FG  `  I
)  =  ( ~FG  `  I
)
9 frgpup3.g . . 3  |-  G  =  (freeGrp `  I )
10 eqid 2454 . . 3  |-  ( Base `  G )  =  (
Base `  G )
11 eqid 2454 . . 3  |-  ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  =  ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11frgpup1 16397 . 2  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  e.  ( G 
GrpHom  H ) )
134adantr 465 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  H  e.  Grp )
145adantr 465 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  I  e.  V )
156adantr 465 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  F :
I --> B )
16 frgpup3.u . . . . 5  |-  U  =  (varFGrp `  I )
17 simpr 461 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  k  e.  I )
181, 2, 3, 13, 14, 15, 7, 8, 9, 10, 11, 16, 17frgpup2 16398 . . . 4  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) `  ( U `  k ) )  =  ( F `  k
) )
1918mpteq2dva 4489 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ( k  e.  I  |->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) `  ( U `  k ) ) )  =  ( k  e.  I  |->  ( F `  k ) ) )
2010, 1ghmf 15874 . . . . 5  |-  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  e.  ( G 
GrpHom  H )  ->  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) : ( Base `  G ) --> B )
2112, 20syl 16 . . . 4  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) : ( Base `  G ) --> B )
228, 16, 9, 10vrgpf 16390 . . . . 5  |-  ( I  e.  V  ->  U : I --> ( Base `  G ) )
235, 22syl 16 . . . 4  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  U : I --> ( Base `  G
) )
24 fcompt 5991 . . . 4  |-  ( ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) : ( Base `  G ) --> B  /\  U : I --> ( Base `  G ) )  -> 
( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  ( k  e.  I  |->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) `  ( U `  k ) ) ) )
2521, 23, 24syl2anc 661 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  ( k  e.  I  |->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) `  ( U `  k ) ) ) )
266feqmptd 5856 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  F  =  ( k  e.  I  |->  ( F `  k ) ) )
2719, 25, 263eqtr4d 2505 . 2  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  F )
284adantr 465 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  H  e.  Grp )
295adantr 465 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  I  e.  V )
306adantr 465 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  F : I --> B )
31 simprl 755 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  m  e.  ( G  GrpHom  H ) )
32 simprr 756 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  (
m  o.  U )  =  F )
331, 2, 3, 28, 29, 30, 7, 8, 9, 10, 11, 16, 31, 32frgpup3lem 16399 . . . 4  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) )
3433expr 615 . . 3  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  m  e.  ( G  GrpHom  H ) )  ->  ( ( m  o.  U )  =  F  ->  m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) ) )
3534ralrimiva 2830 . 2  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  A. m  e.  ( G  GrpHom  H ) ( ( m  o.  U
)  =  F  ->  m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) ) )
36 coeq1 5108 . . . 4  |-  ( m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  ->  ( m  o.  U )  =  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U ) )
3736eqeq1d 2456 . . 3  |-  ( m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  ->  ( (
m  o.  U )  =  F  <->  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  F ) )
3837eqreu 3258 . 2  |-  ( ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  e.  ( G 
GrpHom  H )  /\  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  F  /\  A. m  e.  ( G  GrpHom  H ) ( ( m  o.  U )  =  F  ->  m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( invg `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) ) )  ->  E! m  e.  ( G  GrpHom  H ) ( m  o.  U )  =  F )
3912, 27, 35, 38syl3anc 1219 1  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  E! m  e.  ( G  GrpHom  H ) ( m  o.  U
)  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799   E!wreu 2801   (/)c0 3748   ifcif 3902   <.cop 3994    |-> cmpt 4461    _I cid 4742    X. cxp 4949   ran crn 4952    o. ccom 4955   -->wf 5525   ` cfv 5529  (class class class)co 6203    |-> cmpt2 6205   2oc2o 7027   [cec 7212  Word cword 12343   Basecbs 14296    gsumg cgsu 14502   Grpcgrp 15533   invgcminusg 15534    GrpHom cghm 15867   ~FG cefg 16328  freeGrpcfrgp 16329  varFGrpcvrgp 16330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-ot 3997  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-er 7214  df-ec 7216  df-qs 7220  df-map 7329  df-pm 7330  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-sup 7806  df-card 8224  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-nn 10438  df-2 10495  df-3 10496  df-4 10497  df-5 10498  df-6 10499  df-7 10500  df-8 10501  df-9 10502  df-10 10503  df-n0 10695  df-z 10762  df-dec 10871  df-uz 10977  df-fz 11559  df-fzo 11670  df-seq 11928  df-hash 12225  df-word 12351  df-concat 12353  df-s1 12354  df-substr 12355  df-splice 12356  df-reverse 12357  df-s2 12597  df-struct 14298  df-ndx 14299  df-slot 14300  df-base 14301  df-sets 14302  df-ress 14303  df-plusg 14374  df-mulr 14375  df-sca 14377  df-vsca 14378  df-ip 14379  df-tset 14380  df-ple 14381  df-ds 14383  df-0g 14503  df-gsum 14504  df-imas 14569  df-divs 14570  df-mnd 15538  df-mhm 15587  df-submnd 15588  df-frmd 15650  df-vrmd 15651  df-grp 15668  df-minusg 15669  df-ghm 15868  df-efg 16331  df-frgp 16332  df-vrgp 16333
This theorem is referenced by:  0frgp  16401  frgpcyg  18141
  Copyright terms: Public domain W3C validator