MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup2 Structured version   Unicode version

Theorem frgpup2 16920
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup.b  |-  B  =  ( Base `  H
)
frgpup.n  |-  N  =  ( invg `  H )
frgpup.t  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
frgpup.h  |-  ( ph  ->  H  e.  Grp )
frgpup.i  |-  ( ph  ->  I  e.  V )
frgpup.a  |-  ( ph  ->  F : I --> B )
frgpup.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
frgpup.r  |-  .~  =  ( ~FG  `  I )
frgpup.g  |-  G  =  (freeGrp `  I )
frgpup.x  |-  X  =  ( Base `  G
)
frgpup.e  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
frgpup.u  |-  U  =  (varFGrp `  I )
frgpup.y  |-  ( ph  ->  A  e.  I )
Assertion
Ref Expression
frgpup2  |-  ( ph  ->  ( E `  ( U `  A )
)  =  ( F `
 A ) )
Distinct variable groups:    y, g,
z, A    g, H    y, F, z    y, N, z    B, g, y, z    T, g    .~ , g    ph, g,
y, z    y, I,
z    g, W
Allowed substitution hints:    .~ ( y, z)    T( y, z)    U( y, z, g)    E( y, z, g)    F( g)    G( y, z, g)    H( y, z)    I( g)    N( g)    V( y, z, g)    W( y, z)    X( y, z, g)

Proof of Theorem frgpup2
StepHypRef Expression
1 frgpup.i . . . 4  |-  ( ph  ->  I  e.  V )
2 frgpup.y . . . 4  |-  ( ph  ->  A  e.  I )
3 frgpup.r . . . . 5  |-  .~  =  ( ~FG  `  I )
4 frgpup.u . . . . 5  |-  U  =  (varFGrp `  I )
53, 4vrgpval 16911 . . . 4  |-  ( ( I  e.  V  /\  A  e.  I )  ->  ( U `  A
)  =  [ <"
<. A ,  (/) >. "> ]  .~  )
61, 2, 5syl2anc 661 . . 3  |-  ( ph  ->  ( U `  A
)  =  [ <"
<. A ,  (/) >. "> ]  .~  )
76fveq2d 5876 . 2  |-  ( ph  ->  ( E `  ( U `  A )
)  =  ( E `
 [ <" <. A ,  (/) >. "> ]  .~  ) )
8 0ex 4587 . . . . . . . 8  |-  (/)  e.  _V
98prid1 4140 . . . . . . 7  |-  (/)  e.  { (/)
,  1o }
10 df2o3 7161 . . . . . . 7  |-  2o  =  { (/) ,  1o }
119, 10eleqtrri 2544 . . . . . 6  |-  (/)  e.  2o
12 opelxpi 5040 . . . . . 6  |-  ( ( A  e.  I  /\  (/) 
e.  2o )  ->  <. A ,  (/) >.  e.  ( I  X.  2o ) )
132, 11, 12sylancl 662 . . . . 5  |-  ( ph  -> 
<. A ,  (/) >.  e.  ( I  X.  2o ) )
1413s1cld 12623 . . . 4  |-  ( ph  ->  <" <. A ,  (/)
>. ">  e. Word  (
I  X.  2o ) )
15 frgpup.w . . . . 5  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
16 2on 7156 . . . . . . 7  |-  2o  e.  On
17 xpexg 6601 . . . . . . 7  |-  ( ( I  e.  V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
181, 16, 17sylancl 662 . . . . . 6  |-  ( ph  ->  ( I  X.  2o )  e.  _V )
19 wrdexg 12563 . . . . . 6  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
20 fvi 5930 . . . . . 6  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
2118, 19, 203syl 20 . . . . 5  |-  ( ph  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o ) )
2215, 21syl5eq 2510 . . . 4  |-  ( ph  ->  W  = Word  ( I  X.  2o ) )
2314, 22eleqtrrd 2548 . . 3  |-  ( ph  ->  <" <. A ,  (/)
>. ">  e.  W
)
24 frgpup.b . . . 4  |-  B  =  ( Base `  H
)
25 frgpup.n . . . 4  |-  N  =  ( invg `  H )
26 frgpup.t . . . 4  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
27 frgpup.h . . . 4  |-  ( ph  ->  H  e.  Grp )
28 frgpup.a . . . 4  |-  ( ph  ->  F : I --> B )
29 frgpup.g . . . 4  |-  G  =  (freeGrp `  I )
30 frgpup.x . . . 4  |-  X  =  ( Base `  G
)
31 frgpup.e . . . 4  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
3224, 25, 26, 27, 1, 28, 15, 3, 29, 30, 31frgpupval 16918 . . 3  |-  ( (
ph  /\  <" <. A ,  (/) >. ">  e.  W )  ->  ( E `  [ <" <. A ,  (/) >. "> ]  .~  )  =  ( H  gsumg  ( T  o.  <" <. A ,  (/) >. "> )
) )
3323, 32mpdan 668 . 2  |-  ( ph  ->  ( E `  [ <" <. A ,  (/) >. "> ]  .~  )  =  ( H  gsumg  ( T  o.  <" <. A ,  (/)
>. "> ) ) )
3424, 25, 26, 27, 1, 28frgpuptf 16914 . . . . . 6  |-  ( ph  ->  T : ( I  X.  2o ) --> B )
35 s1co 12810 . . . . . 6  |-  ( (
<. A ,  (/) >.  e.  ( I  X.  2o )  /\  T : ( I  X.  2o ) --> B )  ->  ( T  o.  <" <. A ,  (/) >. "> )  =  <" ( T `
 <. A ,  (/) >.
) "> )
3613, 34, 35syl2anc 661 . . . . 5  |-  ( ph  ->  ( T  o.  <"
<. A ,  (/) >. "> )  =  <" ( T `  <. A ,  (/)
>. ) "> )
37 df-ov 6299 . . . . . . 7  |-  ( A T (/) )  =  ( T `  <. A ,  (/)
>. )
38 iftrue 3950 . . . . . . . . . 10  |-  ( z  =  (/)  ->  if ( z  =  (/) ,  ( F `  y ) ,  ( N `  ( F `  y ) ) )  =  ( F `  y ) )
39 fveq2 5872 . . . . . . . . . 10  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
4038, 39sylan9eqr 2520 . . . . . . . . 9  |-  ( ( y  =  A  /\  z  =  (/) )  ->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) )  =  ( F `  A ) )
41 fvex 5882 . . . . . . . . 9  |-  ( F `
 A )  e. 
_V
4240, 26, 41ovmpt2a 6432 . . . . . . . 8  |-  ( ( A  e.  I  /\  (/) 
e.  2o )  -> 
( A T (/) )  =  ( F `  A ) )
432, 11, 42sylancl 662 . . . . . . 7  |-  ( ph  ->  ( A T (/) )  =  ( F `  A ) )
4437, 43syl5eqr 2512 . . . . . 6  |-  ( ph  ->  ( T `  <. A ,  (/) >. )  =  ( F `  A ) )
4544s1eqd 12621 . . . . 5  |-  ( ph  ->  <" ( T `
 <. A ,  (/) >.
) ">  =  <" ( F `  A ) "> )
4636, 45eqtrd 2498 . . . 4  |-  ( ph  ->  ( T  o.  <"
<. A ,  (/) >. "> )  =  <" ( F `  A ) "> )
4746oveq2d 6312 . . 3  |-  ( ph  ->  ( H  gsumg  ( T  o.  <"
<. A ,  (/) >. "> ) )  =  ( H  gsumg 
<" ( F `  A ) "> ) )
4828, 2ffvelrnd 6033 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  B )
4924gsumws1 16133 . . . 4  |-  ( ( F `  A )  e.  B  ->  ( H  gsumg 
<" ( F `  A ) "> )  =  ( F `  A ) )
5048, 49syl 16 . . 3  |-  ( ph  ->  ( H  gsumg 
<" ( F `  A ) "> )  =  ( F `  A ) )
5147, 50eqtrd 2498 . 2  |-  ( ph  ->  ( H  gsumg  ( T  o.  <"
<. A ,  (/) >. "> ) )  =  ( F `  A ) )
527, 33, 513eqtrd 2502 1  |-  ( ph  ->  ( E `  ( U `  A )
)  =  ( F `
 A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 1819   _Vcvv 3109   (/)c0 3793   ifcif 3944   {cpr 4034   <.cop 4038    |-> cmpt 4515    _I cid 4799   Oncon0 4887    X. cxp 5006   ran crn 5009    o. ccom 5012   -->wf 5590   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298   1oc1o 7141   2oc2o 7142   [cec 7327  Word cword 12537   <"cs1 12540   Basecbs 14643    gsumg cgsu 14857   Grpcgrp 16179   invgcminusg 16180   ~FG cefg 16850  freeGrpcfrgp 16851  varFGrpcvrgp 16852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-ot 4041  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-ec 7331  df-qs 7335  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-fz 11698  df-fzo 11821  df-seq 12110  df-hash 12408  df-word 12545  df-concat 12547  df-s1 12548  df-substr 12549  df-splice 12550  df-s2 12824  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-0g 14858  df-gsum 14859  df-imas 14924  df-qus 14925  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-submnd 16093  df-frmd 16143  df-grp 16183  df-minusg 16184  df-efg 16853  df-frgp 16854  df-vrgp 16855
This theorem is referenced by:  frgpup3  16922
  Copyright terms: Public domain W3C validator