MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup2 Unicode version

Theorem frgpup2 15363
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup.b  |-  B  =  ( Base `  H
)
frgpup.n  |-  N  =  ( inv g `  H )
frgpup.t  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
frgpup.h  |-  ( ph  ->  H  e.  Grp )
frgpup.i  |-  ( ph  ->  I  e.  V )
frgpup.a  |-  ( ph  ->  F : I --> B )
frgpup.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
frgpup.r  |-  .~  =  ( ~FG  `  I )
frgpup.g  |-  G  =  (freeGrp `  I )
frgpup.x  |-  X  =  ( Base `  G
)
frgpup.e  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
frgpup.u  |-  U  =  (varFGrp `  I )
frgpup.y  |-  ( ph  ->  A  e.  I )
Assertion
Ref Expression
frgpup2  |-  ( ph  ->  ( E `  ( U `  A )
)  =  ( F `
 A ) )
Distinct variable groups:    y, g,
z, A    g, H    y, F, z    y, N, z    B, g, y, z    T, g    .~ , g    ph, g,
y, z    y, I,
z    g, W
Allowed substitution hints:    .~ ( y, z)    T( y, z)    U( y, z, g)    E( y, z, g)    F( g)    G( y, z, g)    H( y, z)    I( g)    N( g)    V( y, z, g)    W( y, z)    X( y, z, g)

Proof of Theorem frgpup2
StepHypRef Expression
1 frgpup.i . . . 4  |-  ( ph  ->  I  e.  V )
2 frgpup.y . . . 4  |-  ( ph  ->  A  e.  I )
3 frgpup.r . . . . 5  |-  .~  =  ( ~FG  `  I )
4 frgpup.u . . . . 5  |-  U  =  (varFGrp `  I )
53, 4vrgpval 15354 . . . 4  |-  ( ( I  e.  V  /\  A  e.  I )  ->  ( U `  A
)  =  [ <"
<. A ,  (/) >. "> ]  .~  )
61, 2, 5syl2anc 643 . . 3  |-  ( ph  ->  ( U `  A
)  =  [ <"
<. A ,  (/) >. "> ]  .~  )
76fveq2d 5691 . 2  |-  ( ph  ->  ( E `  ( U `  A )
)  =  ( E `
 [ <" <. A ,  (/) >. "> ]  .~  ) )
8 0ex 4299 . . . . . . . 8  |-  (/)  e.  _V
98prid1 3872 . . . . . . 7  |-  (/)  e.  { (/)
,  1o }
10 df2o3 6696 . . . . . . 7  |-  2o  =  { (/) ,  1o }
119, 10eleqtrri 2477 . . . . . 6  |-  (/)  e.  2o
12 opelxpi 4869 . . . . . 6  |-  ( ( A  e.  I  /\  (/) 
e.  2o )  ->  <. A ,  (/) >.  e.  ( I  X.  2o ) )
132, 11, 12sylancl 644 . . . . 5  |-  ( ph  -> 
<. A ,  (/) >.  e.  ( I  X.  2o ) )
1413s1cld 11711 . . . 4  |-  ( ph  ->  <" <. A ,  (/)
>. ">  e. Word  (
I  X.  2o ) )
15 frgpup.w . . . . 5  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
16 2on 6691 . . . . . . 7  |-  2o  e.  On
17 xpexg 4948 . . . . . . 7  |-  ( ( I  e.  V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
181, 16, 17sylancl 644 . . . . . 6  |-  ( ph  ->  ( I  X.  2o )  e.  _V )
19 wrdexg 11694 . . . . . 6  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
20 fvi 5742 . . . . . 6  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
2118, 19, 203syl 19 . . . . 5  |-  ( ph  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o ) )
2215, 21syl5eq 2448 . . . 4  |-  ( ph  ->  W  = Word  ( I  X.  2o ) )
2314, 22eleqtrrd 2481 . . 3  |-  ( ph  ->  <" <. A ,  (/)
>. ">  e.  W
)
24 frgpup.b . . . 4  |-  B  =  ( Base `  H
)
25 frgpup.n . . . 4  |-  N  =  ( inv g `  H )
26 frgpup.t . . . 4  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
27 frgpup.h . . . 4  |-  ( ph  ->  H  e.  Grp )
28 frgpup.a . . . 4  |-  ( ph  ->  F : I --> B )
29 frgpup.g . . . 4  |-  G  =  (freeGrp `  I )
30 frgpup.x . . . 4  |-  X  =  ( Base `  G
)
31 frgpup.e . . . 4  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
3224, 25, 26, 27, 1, 28, 15, 3, 29, 30, 31frgpupval 15361 . . 3  |-  ( (
ph  /\  <" <. A ,  (/) >. ">  e.  W )  ->  ( E `  [ <" <. A ,  (/) >. "> ]  .~  )  =  ( H  gsumg  ( T  o.  <" <. A ,  (/) >. "> )
) )
3323, 32mpdan 650 . 2  |-  ( ph  ->  ( E `  [ <" <. A ,  (/) >. "> ]  .~  )  =  ( H  gsumg  ( T  o.  <" <. A ,  (/)
>. "> ) ) )
3424, 25, 26, 27, 1, 28frgpuptf 15357 . . . . . 6  |-  ( ph  ->  T : ( I  X.  2o ) --> B )
35 s1co 11757 . . . . . 6  |-  ( (
<. A ,  (/) >.  e.  ( I  X.  2o )  /\  T : ( I  X.  2o ) --> B )  ->  ( T  o.  <" <. A ,  (/) >. "> )  =  <" ( T `
 <. A ,  (/) >.
) "> )
3613, 34, 35syl2anc 643 . . . . 5  |-  ( ph  ->  ( T  o.  <"
<. A ,  (/) >. "> )  =  <" ( T `  <. A ,  (/)
>. ) "> )
37 df-ov 6043 . . . . . . 7  |-  ( A T (/) )  =  ( T `  <. A ,  (/)
>. )
38 iftrue 3705 . . . . . . . . . 10  |-  ( z  =  (/)  ->  if ( z  =  (/) ,  ( F `  y ) ,  ( N `  ( F `  y ) ) )  =  ( F `  y ) )
39 fveq2 5687 . . . . . . . . . 10  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
4038, 39sylan9eqr 2458 . . . . . . . . 9  |-  ( ( y  =  A  /\  z  =  (/) )  ->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) )  =  ( F `  A ) )
41 fvex 5701 . . . . . . . . 9  |-  ( F `
 A )  e. 
_V
4240, 26, 41ovmpt2a 6163 . . . . . . . 8  |-  ( ( A  e.  I  /\  (/) 
e.  2o )  -> 
( A T (/) )  =  ( F `  A ) )
432, 11, 42sylancl 644 . . . . . . 7  |-  ( ph  ->  ( A T (/) )  =  ( F `  A ) )
4437, 43syl5eqr 2450 . . . . . 6  |-  ( ph  ->  ( T `  <. A ,  (/) >. )  =  ( F `  A ) )
4544s1eqd 11709 . . . . 5  |-  ( ph  ->  <" ( T `
 <. A ,  (/) >.
) ">  =  <" ( F `  A ) "> )
4636, 45eqtrd 2436 . . . 4  |-  ( ph  ->  ( T  o.  <"
<. A ,  (/) >. "> )  =  <" ( F `  A ) "> )
4746oveq2d 6056 . . 3  |-  ( ph  ->  ( H  gsumg  ( T  o.  <"
<. A ,  (/) >. "> ) )  =  ( H  gsumg 
<" ( F `  A ) "> ) )
4828, 2ffvelrnd 5830 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  B )
4924gsumws1 14740 . . . 4  |-  ( ( F `  A )  e.  B  ->  ( H  gsumg 
<" ( F `  A ) "> )  =  ( F `  A ) )
5048, 49syl 16 . . 3  |-  ( ph  ->  ( H  gsumg 
<" ( F `  A ) "> )  =  ( F `  A ) )
5147, 50eqtrd 2436 . 2  |-  ( ph  ->  ( H  gsumg  ( T  o.  <"
<. A ,  (/) >. "> ) )  =  ( F `  A ) )
527, 33, 513eqtrd 2440 1  |-  ( ph  ->  ( E `  ( U `  A )
)  =  ( F `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   _Vcvv 2916   (/)c0 3588   ifcif 3699   {cpr 3775   <.cop 3777    e. cmpt 4226    _I cid 4453   Oncon0 4541    X. cxp 4835   ran crn 4838    o. ccom 4841   -->wf 5409   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   1oc1o 6676   2oc2o 6677   [cec 6862  Word cword 11672   <"cs1 11674   Basecbs 13424    gsumg cgsu 13679   Grpcgrp 14640   inv gcminusg 14641   ~FG cefg 15293  freeGrpcfrgp 15294  varFGrpcvrgp 15295
This theorem is referenced by:  frgpup3  15365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-ot 3784  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-ec 6866  df-qs 6870  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-fzo 11091  df-seq 11279  df-hash 11574  df-word 11678  df-concat 11679  df-s1 11680  df-substr 11681  df-splice 11682  df-s2 11767  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-0g 13682  df-gsum 13683  df-imas 13689  df-divs 13690  df-mnd 14645  df-submnd 14694  df-frmd 14749  df-grp 14767  df-minusg 14768  df-efg 15296  df-frgp 15297  df-vrgp 15298
  Copyright terms: Public domain W3C validator