MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpcpbl Structured version   Unicode version

Theorem frgpcpbl 16756
Description: Compatibility of the group operation with the free group equivalence relation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frgpval.m  |-  G  =  (freeGrp `  I )
frgpval.b  |-  M  =  (freeMnd `  ( I  X.  2o ) )
frgpval.r  |-  .~  =  ( ~FG  `  I )
frgpcpbl.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
frgpcpbl  |-  ( ( A  .~  C  /\  B  .~  D )  -> 
( A  .+  B
)  .~  ( C  .+  D ) )

Proof of Theorem frgpcpbl
Dummy variables  k  m  n  t  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . 3  |-  (  _I 
` Word  ( I  X.  2o ) )  =  (  _I  ` Word  ( I  X.  2o ) )
2 frgpval.r . . 3  |-  .~  =  ( ~FG  `  I )
3 eqid 2443 . . 3  |-  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. )  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. )
4 eqid 2443 . . 3  |-  ( v  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  ( n  e.  ( 0 ... ( # `  v
) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) `  w ) "> >.
) ) )  =  ( v  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  ( n  e.  ( 0 ... ( # `  v
) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) `  w ) "> >.
) ) )
5 eqid 2443 . . 3  |-  ( (  _I  ` Word  ( I  X.  2o ) )  \  U_ x  e.  (  _I  ` Word  ( I  X.  2o ) ) ran  (
( v  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  ( n  e.  ( 0 ... ( # `  v
) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) `  w ) "> >.
) ) ) `  x ) )  =  ( (  _I  ` Word  ( I  X.  2o ) )  \  U_ x  e.  (  _I  ` Word 
( I  X.  2o ) ) ran  (
( v  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  ( n  e.  ( 0 ... ( # `  v
) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) `  w ) "> >.
) ) ) `  x ) )
6 eqid 2443 . . 3  |-  ( m  e.  { t  e.  (Word  (  _I  ` Word  ( I  X.  2o ) )  \  { (/)
} )  |  ( ( t `  0
)  e.  ( (  _I  ` Word  ( I  X.  2o ) )  \  U_ x  e.  (  _I  ` Word  ( I  X.  2o ) ) ran  (
( v  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  ( n  e.  ( 0 ... ( # `  v
) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) `  w ) "> >.
) ) ) `  x ) )  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( ( v  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  ( n  e.  ( 0 ... ( # `  v
) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) `  w ) "> >.
) ) ) `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )  =  ( m  e.  { t  e.  (Word  (  _I  ` Word  ( I  X.  2o ) )  \  { (/)
} )  |  ( ( t `  0
)  e.  ( (  _I  ` Word  ( I  X.  2o ) )  \  U_ x  e.  (  _I  ` Word  ( I  X.  2o ) ) ran  (
( v  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  ( n  e.  ( 0 ... ( # `  v
) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) `  w ) "> >.
) ) ) `  x ) )  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( ( v  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  ( n  e.  ( 0 ... ( # `  v
) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) `  w ) "> >.
) ) ) `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
71, 2, 3, 4, 5, 6efgcpbl2 16754 . 2  |-  ( ( A  .~  C  /\  B  .~  D )  -> 
( A concat  B )  .~  ( C concat  D ) )
81, 2efger 16715 . . . . . 6  |-  .~  Er  (  _I  ` Word  ( I  X.  2o ) )
98a1i 11 . . . . 5  |-  ( ( A  .~  C  /\  B  .~  D )  ->  .~  Er  (  _I  ` Word  ( I  X.  2o ) ) )
10 simpl 457 . . . . 5  |-  ( ( A  .~  C  /\  B  .~  D )  ->  A  .~  C )
119, 10ercl 7324 . . . 4  |-  ( ( A  .~  C  /\  B  .~  D )  ->  A  e.  (  _I  ` Word 
( I  X.  2o ) ) )
121efgrcl 16712 . . . . . . 7  |-  ( A  e.  (  _I  ` Word  ( I  X.  2o ) )  ->  (
I  e.  _V  /\  (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o ) ) )
1311, 12syl 16 . . . . . 6  |-  ( ( A  .~  C  /\  B  .~  D )  -> 
( I  e.  _V  /\  (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o ) ) )
1413simprd 463 . . . . 5  |-  ( ( A  .~  C  /\  B  .~  D )  -> 
(  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o ) )
1513simpld 459 . . . . . . 7  |-  ( ( A  .~  C  /\  B  .~  D )  ->  I  e.  _V )
16 2on 7140 . . . . . . 7  |-  2o  e.  On
17 xpexg 6587 . . . . . . 7  |-  ( ( I  e.  _V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
1815, 16, 17sylancl 662 . . . . . 6  |-  ( ( A  .~  C  /\  B  .~  D )  -> 
( I  X.  2o )  e.  _V )
19 frgpval.b . . . . . . 7  |-  M  =  (freeMnd `  ( I  X.  2o ) )
20 eqid 2443 . . . . . . 7  |-  ( Base `  M )  =  (
Base `  M )
2119, 20frmdbas 15999 . . . . . 6  |-  ( ( I  X.  2o )  e.  _V  ->  ( Base `  M )  = Word  ( I  X.  2o ) )
2218, 21syl 16 . . . . 5  |-  ( ( A  .~  C  /\  B  .~  D )  -> 
( Base `  M )  = Word  ( I  X.  2o ) )
2314, 22eqtr4d 2487 . . . 4  |-  ( ( A  .~  C  /\  B  .~  D )  -> 
(  _I  ` Word  ( I  X.  2o ) )  =  ( Base `  M
) )
2411, 23eleqtrd 2533 . . 3  |-  ( ( A  .~  C  /\  B  .~  D )  ->  A  e.  ( Base `  M ) )
25 simpr 461 . . . . 5  |-  ( ( A  .~  C  /\  B  .~  D )  ->  B  .~  D )
269, 25ercl 7324 . . . 4  |-  ( ( A  .~  C  /\  B  .~  D )  ->  B  e.  (  _I  ` Word 
( I  X.  2o ) ) )
2726, 23eleqtrd 2533 . . 3  |-  ( ( A  .~  C  /\  B  .~  D )  ->  B  e.  ( Base `  M ) )
28 frgpcpbl.p . . . 4  |-  .+  =  ( +g  `  M )
2919, 20, 28frmdadd 16002 . . 3  |-  ( ( A  e.  ( Base `  M )  /\  B  e.  ( Base `  M
) )  ->  ( A  .+  B )  =  ( A concat  B ) )
3024, 27, 29syl2anc 661 . 2  |-  ( ( A  .~  C  /\  B  .~  D )  -> 
( A  .+  B
)  =  ( A concat  B ) )
319, 10ercl2 7326 . . . 4  |-  ( ( A  .~  C  /\  B  .~  D )  ->  C  e.  (  _I  ` Word 
( I  X.  2o ) ) )
3231, 23eleqtrd 2533 . . 3  |-  ( ( A  .~  C  /\  B  .~  D )  ->  C  e.  ( Base `  M ) )
339, 25ercl2 7326 . . . 4  |-  ( ( A  .~  C  /\  B  .~  D )  ->  D  e.  (  _I  ` Word 
( I  X.  2o ) ) )
3433, 23eleqtrd 2533 . . 3  |-  ( ( A  .~  C  /\  B  .~  D )  ->  D  e.  ( Base `  M ) )
3519, 20, 28frmdadd 16002 . . 3  |-  ( ( C  e.  ( Base `  M )  /\  D  e.  ( Base `  M
) )  ->  ( C  .+  D )  =  ( C concat  D ) )
3632, 34, 35syl2anc 661 . 2  |-  ( ( A  .~  C  /\  B  .~  D )  -> 
( C  .+  D
)  =  ( C concat  D ) )
377, 30, 363brtr4d 4467 1  |-  ( ( A  .~  C  /\  B  .~  D )  -> 
( A  .+  B
)  .~  ( C  .+  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1383    e. wcel 1804   A.wral 2793   {crab 2797   _Vcvv 3095    \ cdif 3458   (/)c0 3770   {csn 4014   <.cop 4020   <.cotp 4022   U_ciun 4315   class class class wbr 4437    |-> cmpt 4495    _I cid 4780   Oncon0 4868    X. cxp 4987   ran crn 4990   ` cfv 5578  (class class class)co 6281    |-> cmpt2 6283   1oc1o 7125   2oc2o 7126    Er wer 7310   0cc0 9495   1c1 9496    - cmin 9810   ...cfz 11683  ..^cfzo 11806   #chash 12387  Word cword 12516   concat cconcat 12518   splice csplice 12521   <"cs2 12788   Basecbs 14614   +g cplusg 14679  freeMndcfrmd 15994   ~FG cefg 16703  freeGrpcfrgp 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-ot 4023  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-ec 7315  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-2 10601  df-n0 10803  df-z 10872  df-uz 11093  df-fz 11684  df-fzo 11807  df-hash 12388  df-word 12524  df-concat 12526  df-s1 12527  df-substr 12528  df-splice 12529  df-s2 12795  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-plusg 14692  df-frmd 15996  df-efg 16706
This theorem is referenced by:  frgp0  16757  frgpadd  16760
  Copyright terms: Public domain W3C validator