MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgp0 Structured version   Unicode version

Theorem frgp0 16584
Description: The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frgp0.m  |-  G  =  (freeGrp `  I )
frgp0.r  |-  .~  =  ( ~FG  `  I )
Assertion
Ref Expression
frgp0  |-  ( I  e.  V  ->  ( G  e.  Grp  /\  [ (/)
]  .~  =  ( 0g `  G ) ) )

Proof of Theorem frgp0
Dummy variables  a 
b  c  d  x  y  z  n  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgp0.m . . 3  |-  G  =  (freeGrp `  I )
2 eqid 2467 . . 3  |-  (freeMnd `  (
I  X.  2o ) )  =  (freeMnd `  (
I  X.  2o ) )
3 frgp0.r . . 3  |-  .~  =  ( ~FG  `  I )
41, 2, 3frgpval 16582 . 2  |-  ( I  e.  V  ->  G  =  ( (freeMnd `  (
I  X.  2o ) )  /.s 
.~  ) )
5 2on 7138 . . . . 5  |-  2o  e.  On
6 xpexg 6586 . . . . 5  |-  ( ( I  e.  V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
75, 6mpan2 671 . . . 4  |-  ( I  e.  V  ->  (
I  X.  2o )  e.  _V )
8 eqid 2467 . . . . 5  |-  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) )
92, 8frmdbas 15852 . . . 4  |-  ( ( I  X.  2o )  e.  _V  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
107, 9syl 16 . . 3  |-  ( I  e.  V  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
1110eqcomd 2475 . 2  |-  ( I  e.  V  -> Word  ( I  X.  2o )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
12 eqidd 2468 . 2  |-  ( I  e.  V  ->  ( +g  `  (freeMnd `  (
I  X.  2o ) ) )  =  ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) )
13 eqid 2467 . . . 4  |-  (  _I 
` Word  ( I  X.  2o ) )  =  (  _I  ` Word  ( I  X.  2o ) )
1413, 3efger 16542 . . 3  |-  .~  Er  (  _I  ` Word  ( I  X.  2o ) )
15 wrdexg 12523 . . . . 5  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
16 fvi 5924 . . . . 5  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
177, 15, 163syl 20 . . . 4  |-  ( I  e.  V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
18 ereq2 7319 . . . 4  |-  ( (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o )  ->  (  .~  Er  (  _I  ` Word  ( I  X.  2o ) )  <->  .~  Er Word  ( I  X.  2o ) ) )
1917, 18syl 16 . . 3  |-  ( I  e.  V  ->  (  .~  Er  (  _I  ` Word  ( I  X.  2o ) )  <->  .~  Er Word  (
I  X.  2o ) ) )
2014, 19mpbii 211 . 2  |-  ( I  e.  V  ->  .~  Er Word  ( I  X.  2o ) )
21 fvex 5876 . . 3  |-  (freeMnd `  (
I  X.  2o ) )  e.  _V
2221a1i 11 . 2  |-  ( I  e.  V  ->  (freeMnd `  ( I  X.  2o ) )  e.  _V )
23 eqid 2467 . . . 4  |-  ( +g  `  (freeMnd `  ( I  X.  2o ) ) )  =  ( +g  `  (freeMnd `  ( I  X.  2o ) ) )
241, 2, 3, 23frgpcpbl 16583 . . 3  |-  ( ( a  .~  b  /\  c  .~  d )  -> 
( a ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) c )  .~  (
b ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) d ) )
2524a1i 11 . 2  |-  ( I  e.  V  ->  (
( a  .~  b  /\  c  .~  d
)  ->  ( a
( +g  `  (freeMnd `  (
I  X.  2o ) ) ) c )  .~  ( b ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) d ) ) )
262frmdmnd 15859 . . . . . 6  |-  ( ( I  X.  2o )  e.  _V  ->  (freeMnd `  ( I  X.  2o ) )  e.  Mnd )
277, 26syl 16 . . . . 5  |-  ( I  e.  V  ->  (freeMnd `  ( I  X.  2o ) )  e.  Mnd )
28273ad2ant1 1017 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  (freeMnd `  ( I  X.  2o ) )  e.  Mnd )
29 simp2 997 . . . . 5  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  x  e. Word  ( I  X.  2o ) )
30113ad2ant1 1017 . . . . 5  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  -> Word  ( I  X.  2o )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
3129, 30eleqtrd 2557 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  x  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
32 simp3 998 . . . . 5  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  y  e. Word  ( I  X.  2o ) )
3332, 30eleqtrd 2557 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  y  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
348, 23mndcl 15737 . . . 4  |-  ( ( (freeMnd `  ( I  X.  2o ) )  e. 
Mnd  /\  x  e.  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  /\  y  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )  ->  ( x ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
3528, 31, 33, 34syl3anc 1228 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  (
x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) y )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
3635, 30eleqtrrd 2558 . 2  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  (
x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) y )  e. Word  ( I  X.  2o ) )
3720adantr 465 . . . 4  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  ->  .~  Er Word  ( I  X.  2o ) )
3827adantr 465 . . . . . 6  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
(freeMnd `  ( I  X.  2o ) )  e.  Mnd )
39353adant3r3 1207 . . . . . 6  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
( x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) y )  e.  (
Base `  (freeMnd `  (
I  X.  2o ) ) ) )
40 simpr3 1004 . . . . . . 7  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
z  e. Word  ( I  X.  2o ) )
4111adantr 465 . . . . . . 7  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> Word  ( I  X.  2o )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
4240, 41eleqtrd 2557 . . . . . 6  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
z  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
438, 23mndcl 15737 . . . . . 6  |-  ( ( (freeMnd `  ( I  X.  2o ) )  e. 
Mnd  /\  ( x
( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  /\  z  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )  ->  ( (
x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
4438, 39, 42, 43syl3anc 1228 . . . . 5  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
( ( x ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
4544, 41eleqtrrd 2558 . . . 4  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
( ( x ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  e. Word  ( I  X.  2o ) )
4637, 45erref 7331 . . 3  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
( ( x ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  .~  ( ( x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z ) )
47313adant3r3 1207 . . . 4  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  ->  x  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
48333adant3r3 1207 . . . 4  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
y  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
498, 23mndass 15738 . . . 4  |-  ( ( (freeMnd `  ( I  X.  2o ) )  e. 
Mnd  /\  ( x  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  /\  y  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  /\  z  e.  (
Base `  (freeMnd `  (
I  X.  2o ) ) ) ) )  ->  ( ( x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  =  ( x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) ( y ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z ) ) )
5038, 47, 48, 42, 49syl13anc 1230 . . 3  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
( ( x ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  =  ( x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) ( y ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z ) ) )
5146, 50breqtrd 4471 . 2  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
( ( x ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  .~  ( x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) ( y ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z ) ) )
52 wrd0 12531 . . 3  |-  (/)  e. Word  (
I  X.  2o )
5352a1i 11 . 2  |-  ( I  e.  V  ->  (/)  e. Word  (
I  X.  2o ) )
5452, 11syl5eleq 2561 . . . . . 6  |-  ( I  e.  V  ->  (/)  e.  (
Base `  (freeMnd `  (
I  X.  2o ) ) ) )
5554adantr 465 . . . . 5  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  ->  (/) 
e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
5611eleq2d 2537 . . . . . 6  |-  ( I  e.  V  ->  (
x  e. Word  ( I  X.  2o )  <->  x  e.  ( Base `  (freeMnd `  (
I  X.  2o ) ) ) ) )
5756biimpa 484 . . . . 5  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  ->  x  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
582, 8, 23frmdadd 15855 . . . . 5  |-  ( (
(/)  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  /\  x  e.  (
Base `  (freeMnd `  (
I  X.  2o ) ) ) )  -> 
( (/) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  =  ( (/) concat  x ) )
5955, 57, 58syl2anc 661 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( (/) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  =  ( (/) concat  x ) )
60 ccatlid 12568 . . . . 5  |-  ( x  e. Word  ( I  X.  2o )  ->  ( (/) concat  x )  =  x )
6160adantl 466 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( (/) concat  x )  =  x )
6259, 61eqtrd 2508 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( (/) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  =  x )
6320adantr 465 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  ->  .~  Er Word  ( I  X.  2o ) )
64 simpr 461 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  ->  x  e. Word  ( I  X.  2o ) )
6563, 64erref 7331 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  ->  x  .~  x )
6662, 65eqbrtrd 4467 . 2  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( (/) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  .~  x )
67 revcl 12698 . . . 4  |-  ( x  e. Word  ( I  X.  2o )  ->  (reverse `  x
)  e. Word  ( I  X.  2o ) )
6867adantl 466 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
(reverse `  x )  e. Word 
( I  X.  2o ) )
69 eqid 2467 . . . . 5  |-  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. )  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. )
7069efgmf 16537 . . . 4  |-  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) : ( I  X.  2o ) --> ( I  X.  2o )
7170a1i 11 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
) : ( I  X.  2o ) --> ( I  X.  2o ) )
72 wrdco 12760 . . 3  |-  ( ( (reverse `  x )  e. Word  ( I  X.  2o )  /\  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. ) : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( (
y  e.  I ,  z  e.  2o  |->  <.
y ,  ( 1o 
\  z ) >.
)  o.  (reverse `  x
) )  e. Word  (
I  X.  2o ) )
7368, 71, 72syl2anc 661 . 2  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. )  o.  (reverse `  x ) )  e. Word 
( I  X.  2o ) )
7411adantr 465 . . . . 5  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> Word  ( I  X.  2o )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
7573, 74eleqtrd 2557 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. )  o.  (reverse `  x ) )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
762, 8, 23frmdadd 15855 . . . 4  |-  ( ( ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. )  o.  (reverse `  x ) )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  /\  x  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )  ->  ( (
( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)  o.  (reverse `  x
) ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  =  ( ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. )  o.  (reverse `  x ) ) concat  x
) )
7775, 57, 76syl2anc 661 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. )  o.  (reverse `  x )
) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  =  ( ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)  o.  (reverse `  x
) ) concat  x )
)
7817eleq2d 2537 . . . . 5  |-  ( I  e.  V  ->  (
x  e.  (  _I 
` Word  ( I  X.  2o ) )  <->  x  e. Word  ( I  X.  2o ) ) )
7978biimpar 485 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  ->  x  e.  (  _I  ` Word 
( I  X.  2o ) ) )
80 eqid 2467 . . . . 5  |-  ( v  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  ( n  e.  ( 0 ... ( # `  v
) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) `  w ) "> >.
) ) )  =  ( v  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  ( n  e.  ( 0 ... ( # `  v
) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) `  w ) "> >.
) ) )
8113, 3, 69, 80efginvrel1 16552 . . . 4  |-  ( x  e.  (  _I  ` Word  ( I  X.  2o ) )  ->  (
( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. )  o.  (reverse `  x ) ) concat  x
)  .~  (/) )
8279, 81syl 16 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. )  o.  (reverse `  x )
) concat  x )  .~  (/) )
8377, 82eqbrtrd 4467 . 2  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. )  o.  (reverse `  x )
) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  .~  (/) )
844, 11, 12, 20, 22, 25, 36, 51, 53, 66, 73, 83divsgrp2 15998 1  |-  ( I  e.  V  ->  ( G  e.  Grp  /\  [ (/)
]  .~  =  ( 0g `  G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   _Vcvv 3113    \ cdif 3473   (/)c0 3785   <.cop 4033   <.cotp 4035   class class class wbr 4447    |-> cmpt 4505    _I cid 4790   Oncon0 4878    X. cxp 4997    o. ccom 5003   -->wf 5584   ` cfv 5588  (class class class)co 6284    |-> cmpt2 6286   1oc1o 7123   2oc2o 7124    Er wer 7308   [cec 7309   0cc0 9492   ...cfz 11672   #chash 12373  Word cword 12500   concat cconcat 12502   splice csplice 12505  reversecreverse 12506   <"cs2 12769   Basecbs 14490   +g cplusg 14555   0gc0g 14695   Mndcmnd 15726   Grpcgrp 15727  freeMndcfrmd 15847   ~FG cefg 16530  freeGrpcfrgp 16531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-ot 4036  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-ec 7313  df-qs 7317  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-fz 11673  df-fzo 11793  df-hash 12374  df-word 12508  df-concat 12510  df-s1 12511  df-substr 12512  df-splice 12513  df-reverse 12514  df-s2 12776  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-plusg 14568  df-mulr 14569  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-0g 14697  df-imas 14763  df-divs 14764  df-mnd 15732  df-frmd 15849  df-grp 15867  df-efg 16533  df-frgp 16534
This theorem is referenced by:  frgpgrp  16586  frgpinv  16588  frgpmhm  16589
  Copyright terms: Public domain W3C validator