MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgp0 Structured version   Unicode version

Theorem frgp0 16257
Description: The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frgp0.m  |-  G  =  (freeGrp `  I )
frgp0.r  |-  .~  =  ( ~FG  `  I )
Assertion
Ref Expression
frgp0  |-  ( I  e.  V  ->  ( G  e.  Grp  /\  [ (/)
]  .~  =  ( 0g `  G ) ) )

Proof of Theorem frgp0
Dummy variables  a 
b  c  d  x  y  z  n  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgp0.m . . 3  |-  G  =  (freeGrp `  I )
2 eqid 2443 . . 3  |-  (freeMnd `  (
I  X.  2o ) )  =  (freeMnd `  (
I  X.  2o ) )
3 frgp0.r . . 3  |-  .~  =  ( ~FG  `  I )
41, 2, 3frgpval 16255 . 2  |-  ( I  e.  V  ->  G  =  ( (freeMnd `  (
I  X.  2o ) )  /.s 
.~  ) )
5 2on 6928 . . . . 5  |-  2o  e.  On
6 xpexg 6507 . . . . 5  |-  ( ( I  e.  V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
75, 6mpan2 671 . . . 4  |-  ( I  e.  V  ->  (
I  X.  2o )  e.  _V )
8 eqid 2443 . . . . 5  |-  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) )
92, 8frmdbas 15530 . . . 4  |-  ( ( I  X.  2o )  e.  _V  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
107, 9syl 16 . . 3  |-  ( I  e.  V  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
1110eqcomd 2448 . 2  |-  ( I  e.  V  -> Word  ( I  X.  2o )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
12 eqidd 2444 . 2  |-  ( I  e.  V  ->  ( +g  `  (freeMnd `  (
I  X.  2o ) ) )  =  ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) )
13 eqid 2443 . . . 4  |-  (  _I 
` Word  ( I  X.  2o ) )  =  (  _I  ` Word  ( I  X.  2o ) )
1413, 3efger 16215 . . 3  |-  .~  Er  (  _I  ` Word  ( I  X.  2o ) )
15 wrdexg 12244 . . . . 5  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
16 fvi 5748 . . . . 5  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
177, 15, 163syl 20 . . . 4  |-  ( I  e.  V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
18 ereq2 7109 . . . 4  |-  ( (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o )  ->  (  .~  Er  (  _I  ` Word  ( I  X.  2o ) )  <->  .~  Er Word  ( I  X.  2o ) ) )
1917, 18syl 16 . . 3  |-  ( I  e.  V  ->  (  .~  Er  (  _I  ` Word  ( I  X.  2o ) )  <->  .~  Er Word  (
I  X.  2o ) ) )
2014, 19mpbii 211 . 2  |-  ( I  e.  V  ->  .~  Er Word  ( I  X.  2o ) )
21 fvex 5701 . . 3  |-  (freeMnd `  (
I  X.  2o ) )  e.  _V
2221a1i 11 . 2  |-  ( I  e.  V  ->  (freeMnd `  ( I  X.  2o ) )  e.  _V )
23 eqid 2443 . . . 4  |-  ( +g  `  (freeMnd `  ( I  X.  2o ) ) )  =  ( +g  `  (freeMnd `  ( I  X.  2o ) ) )
241, 2, 3, 23frgpcpbl 16256 . . 3  |-  ( ( a  .~  b  /\  c  .~  d )  -> 
( a ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) c )  .~  (
b ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) d ) )
2524a1i 11 . 2  |-  ( I  e.  V  ->  (
( a  .~  b  /\  c  .~  d
)  ->  ( a
( +g  `  (freeMnd `  (
I  X.  2o ) ) ) c )  .~  ( b ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) d ) ) )
262frmdmnd 15537 . . . . . 6  |-  ( ( I  X.  2o )  e.  _V  ->  (freeMnd `  ( I  X.  2o ) )  e.  Mnd )
277, 26syl 16 . . . . 5  |-  ( I  e.  V  ->  (freeMnd `  ( I  X.  2o ) )  e.  Mnd )
28273ad2ant1 1009 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  (freeMnd `  ( I  X.  2o ) )  e.  Mnd )
29 simp2 989 . . . . 5  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  x  e. Word  ( I  X.  2o ) )
30113ad2ant1 1009 . . . . 5  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  -> Word  ( I  X.  2o )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
3129, 30eleqtrd 2519 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  x  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
32 simp3 990 . . . . 5  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  y  e. Word  ( I  X.  2o ) )
3332, 30eleqtrd 2519 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  y  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
348, 23mndcl 15420 . . . 4  |-  ( ( (freeMnd `  ( I  X.  2o ) )  e. 
Mnd  /\  x  e.  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  /\  y  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )  ->  ( x ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
3528, 31, 33, 34syl3anc 1218 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  (
x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) y )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
3635, 30eleqtrrd 2520 . 2  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o ) )  ->  (
x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) y )  e. Word  ( I  X.  2o ) )
3720adantr 465 . . . 4  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  ->  .~  Er Word  ( I  X.  2o ) )
3827adantr 465 . . . . . 6  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
(freeMnd `  ( I  X.  2o ) )  e.  Mnd )
39353adant3r3 1198 . . . . . 6  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
( x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) y )  e.  (
Base `  (freeMnd `  (
I  X.  2o ) ) ) )
40 simpr3 996 . . . . . . 7  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
z  e. Word  ( I  X.  2o ) )
4111adantr 465 . . . . . . 7  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> Word  ( I  X.  2o )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
4240, 41eleqtrd 2519 . . . . . 6  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
z  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
438, 23mndcl 15420 . . . . . 6  |-  ( ( (freeMnd `  ( I  X.  2o ) )  e. 
Mnd  /\  ( x
( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  /\  z  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )  ->  ( (
x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
4438, 39, 42, 43syl3anc 1218 . . . . 5  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
( ( x ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
4544, 41eleqtrrd 2520 . . . 4  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
( ( x ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  e. Word  ( I  X.  2o ) )
4637, 45erref 7121 . . 3  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
( ( x ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  .~  ( ( x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z ) )
47313adant3r3 1198 . . . 4  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  ->  x  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
48333adant3r3 1198 . . . 4  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
y  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
498, 23mndass 15421 . . . 4  |-  ( ( (freeMnd `  ( I  X.  2o ) )  e. 
Mnd  /\  ( x  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  /\  y  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  /\  z  e.  (
Base `  (freeMnd `  (
I  X.  2o ) ) ) ) )  ->  ( ( x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  =  ( x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) ( y ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z ) ) )
5038, 47, 48, 42, 49syl13anc 1220 . . 3  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
( ( x ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  =  ( x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) ( y ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z ) ) )
5146, 50breqtrd 4316 . 2  |-  ( ( I  e.  V  /\  ( x  e. Word  ( I  X.  2o )  /\  y  e. Word  ( I  X.  2o )  /\  z  e. Word  ( I  X.  2o ) ) )  -> 
( ( x ( +g  `  (freeMnd `  (
I  X.  2o ) ) ) y ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z )  .~  ( x ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) ( y ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) z ) ) )
52 wrd0 12252 . . 3  |-  (/)  e. Word  (
I  X.  2o )
5352a1i 11 . 2  |-  ( I  e.  V  ->  (/)  e. Word  (
I  X.  2o ) )
5452, 11syl5eleq 2529 . . . . . 6  |-  ( I  e.  V  ->  (/)  e.  (
Base `  (freeMnd `  (
I  X.  2o ) ) ) )
5554adantr 465 . . . . 5  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  ->  (/) 
e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
5611eleq2d 2510 . . . . . 6  |-  ( I  e.  V  ->  (
x  e. Word  ( I  X.  2o )  <->  x  e.  ( Base `  (freeMnd `  (
I  X.  2o ) ) ) ) )
5756biimpa 484 . . . . 5  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  ->  x  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
582, 8, 23frmdadd 15533 . . . . 5  |-  ( (
(/)  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  /\  x  e.  (
Base `  (freeMnd `  (
I  X.  2o ) ) ) )  -> 
( (/) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  =  ( (/) concat  x ) )
5955, 57, 58syl2anc 661 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( (/) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  =  ( (/) concat  x ) )
60 ccatlid 12284 . . . . 5  |-  ( x  e. Word  ( I  X.  2o )  ->  ( (/) concat  x )  =  x )
6160adantl 466 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( (/) concat  x )  =  x )
6259, 61eqtrd 2475 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( (/) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  =  x )
6320adantr 465 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  ->  .~  Er Word  ( I  X.  2o ) )
64 simpr 461 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  ->  x  e. Word  ( I  X.  2o ) )
6563, 64erref 7121 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  ->  x  .~  x )
6662, 65eqbrtrd 4312 . 2  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( (/) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  .~  x )
67 revcl 12401 . . . 4  |-  ( x  e. Word  ( I  X.  2o )  ->  (reverse `  x
)  e. Word  ( I  X.  2o ) )
6867adantl 466 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
(reverse `  x )  e. Word 
( I  X.  2o ) )
69 eqid 2443 . . . . 5  |-  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. )  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. )
7069efgmf 16210 . . . 4  |-  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) : ( I  X.  2o ) --> ( I  X.  2o )
7170a1i 11 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
) : ( I  X.  2o ) --> ( I  X.  2o ) )
72 wrdco 12459 . . 3  |-  ( ( (reverse `  x )  e. Word  ( I  X.  2o )  /\  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. ) : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( (
y  e.  I ,  z  e.  2o  |->  <.
y ,  ( 1o 
\  z ) >.
)  o.  (reverse `  x
) )  e. Word  (
I  X.  2o ) )
7368, 71, 72syl2anc 661 . 2  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. )  o.  (reverse `  x ) )  e. Word 
( I  X.  2o ) )
7411adantr 465 . . . . 5  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> Word  ( I  X.  2o )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
7573, 74eleqtrd 2519 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. )  o.  (reverse `  x ) )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
762, 8, 23frmdadd 15533 . . . 4  |-  ( ( ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. )  o.  (reverse `  x ) )  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  /\  x  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )  ->  ( (
( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)  o.  (reverse `  x
) ) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  =  ( ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. )  o.  (reverse `  x ) ) concat  x
) )
7775, 57, 76syl2anc 661 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. )  o.  (reverse `  x )
) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  =  ( ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)  o.  (reverse `  x
) ) concat  x )
)
7817eleq2d 2510 . . . . 5  |-  ( I  e.  V  ->  (
x  e.  (  _I 
` Word  ( I  X.  2o ) )  <->  x  e. Word  ( I  X.  2o ) ) )
7978biimpar 485 . . . 4  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  ->  x  e.  (  _I  ` Word 
( I  X.  2o ) ) )
80 eqid 2443 . . . . 5  |-  ( v  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  ( n  e.  ( 0 ... ( # `  v
) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) `  w ) "> >.
) ) )  =  ( v  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  ( n  e.  ( 0 ... ( # `  v
) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. ) `  w ) "> >.
) ) )
8113, 3, 69, 80efginvrel1 16225 . . . 4  |-  ( x  e.  (  _I  ` Word  ( I  X.  2o ) )  ->  (
( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \  z )
>. )  o.  (reverse `  x ) ) concat  x
)  .~  (/) )
8279, 81syl 16 . . 3  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. )  o.  (reverse `  x )
) concat  x )  .~  (/) )
8377, 82eqbrtrd 4312 . 2  |-  ( ( I  e.  V  /\  x  e. Word  ( I  X.  2o ) )  -> 
( ( ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. )  o.  (reverse `  x )
) ( +g  `  (freeMnd `  ( I  X.  2o ) ) ) x )  .~  (/) )
844, 11, 12, 20, 22, 25, 36, 51, 53, 66, 73, 83divsgrp2 15673 1  |-  ( I  e.  V  ->  ( G  e.  Grp  /\  [ (/)
]  .~  =  ( 0g `  G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   _Vcvv 2972    \ cdif 3325   (/)c0 3637   <.cop 3883   <.cotp 3885   class class class wbr 4292    e. cmpt 4350    _I cid 4631   Oncon0 4719    X. cxp 4838    o. ccom 4844   -->wf 5414   ` cfv 5418  (class class class)co 6091    e. cmpt2 6093   1oc1o 6913   2oc2o 6914    Er wer 7098   [cec 7099   0cc0 9282   ...cfz 11437   #chash 12103  Word cword 12221   concat cconcat 12223   splice csplice 12226  reversecreverse 12227   <"cs2 12468   Basecbs 14174   +g cplusg 14238   0gc0g 14378   Mndcmnd 15409   Grpcgrp 15410  freeMndcfrmd 15525   ~FG cefg 16203  freeGrpcfrgp 16204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-ot 3886  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-ec 7103  df-qs 7107  df-map 7216  df-pm 7217  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-fz 11438  df-fzo 11549  df-hash 12104  df-word 12229  df-concat 12231  df-s1 12232  df-substr 12233  df-splice 12234  df-reverse 12235  df-s2 12475  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-plusg 14251  df-mulr 14252  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-0g 14380  df-imas 14446  df-divs 14447  df-mnd 15415  df-frmd 15527  df-grp 15545  df-efg 16206  df-frgp 16207
This theorem is referenced by:  frgpgrp  16259  frgpinv  16261  frgpmhm  16262
  Copyright terms: Public domain W3C validator