Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frg2woteq Structured version   Unicode version

Theorem frg2woteq 30499
Description: There is a (simple) path of length 2 from one vertex to another vertex in a friendship graph if and only if there is a (simple) path of length 2 from the other vertex back to the first vertex. (Contributed by Alexander van der Vekens, 14-Feb-2018.)
Assertion
Ref Expression
frg2woteq  |-  ( ( V FriendGrph  E  /\  A  =/= 
B )  ->  (
( P  e.  ( A ( V 2WalksOnOt  E ) B )  /\  Q  e.  ( B ( V 2WalksOnOt  E ) A ) )  ->  ( ( 1st `  ( 1st `  P
) )  =  ( 2nd `  Q )  /\  ( 2nd `  ( 1st `  P ) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) )

Proof of Theorem frg2woteq
Dummy variables  c 
d  f  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2wlkonot3v 30240 . . . 4  |-  ( P  e.  ( A ( V 2WalksOnOt  E ) B )  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )  /\  P  e.  (
( V  X.  V
)  X.  V ) ) )
21adantr 462 . . 3  |-  ( ( P  e.  ( A ( V 2WalksOnOt  E ) B )  /\  Q  e.  ( B ( V 2WalksOnOt  E ) A ) )  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )  /\  P  e.  (
( V  X.  V
)  X.  V ) ) )
3 el2wlkonot 30234 . . . . . 6  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( P  e.  ( A
( V 2WalksOnOt  E ) B )  <->  E. c  e.  V  ( P  =  <. A ,  c ,  B >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  c  =  ( p `  1 )  /\  B  =  ( p `  2 ) ) ) ) ) )
4 pm3.22 447 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( B  e.  V  /\  A  e.  V
) )
54anim2i 564 . . . . . . 7  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( B  e.  V  /\  A  e.  V
) ) )
6 el2wlkonot 30234 . . . . . . 7  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( B  e.  V  /\  A  e.  V
) )  ->  ( Q  e.  ( B
( V 2WalksOnOt  E ) A )  <->  E. d  e.  V  ( Q  =  <. B ,  d ,  A >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( B  =  ( p `  0 )  /\  d  =  ( p `  1 )  /\  A  =  ( p `  2 ) ) ) ) ) )
75, 6syl 16 . . . . . 6  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( Q  e.  ( B
( V 2WalksOnOt  E ) A )  <->  E. d  e.  V  ( Q  =  <. B ,  d ,  A >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( B  =  ( p `  0 )  /\  d  =  ( p `  1 )  /\  A  =  ( p `  2 ) ) ) ) ) )
83, 7anbi12d 703 . . . . 5  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  (
( P  e.  ( A ( V 2WalksOnOt  E ) B )  /\  Q  e.  ( B ( V 2WalksOnOt  E ) A ) )  <->  ( E. c  e.  V  ( P  =  <. A ,  c ,  B >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0
)  /\  c  =  ( p `  1
)  /\  B  =  ( p `  2
) ) ) )  /\  E. d  e.  V  ( Q  = 
<. B ,  d ,  A >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( B  =  ( p `  0 )  /\  d  =  ( p `  1 )  /\  A  =  ( p `  2 ) ) ) ) ) ) )
983adant3 1001 . . . 4  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  ->  (
( P  e.  ( A ( V 2WalksOnOt  E ) B )  /\  Q  e.  ( B ( V 2WalksOnOt  E ) A ) )  <->  ( E. c  e.  V  ( P  =  <. A ,  c ,  B >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0
)  /\  c  =  ( p `  1
)  /\  B  =  ( p `  2
) ) ) )  /\  E. d  e.  V  ( Q  = 
<. B ,  d ,  A >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( B  =  ( p `  0 )  /\  d  =  ( p `  1 )  /\  A  =  ( p `  2 ) ) ) ) ) ) )
1053adant3 1001 . . . . . . . . . . . . 13  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( B  e.  V  /\  A  e.  V
) ) )
1110adantr 462 . . . . . . . . . . . 12  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )  /\  P  e.  (
( V  X.  V
)  X.  V ) )  /\  c  e.  V )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( B  e.  V  /\  A  e.  V
) ) )
1211ad2antrr 718 . . . . . . . . . . 11  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  /\  c  e.  V )  /\  d  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  ->  ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( B  e.  V  /\  A  e.  V )
) )
13 el2wlkonotot 30238 . . . . . . . . . . . 12  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( B  e.  V  /\  A  e.  V
) )  ->  ( <. B ,  d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A )  <->  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( B  =  ( p `  0 )  /\  d  =  ( p `  1 )  /\  A  =  ( p `  2 ) ) ) ) )
1413bicomd 201 . . . . . . . . . . 11  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( B  e.  V  /\  A  e.  V
) )  ->  ( E. f E. p ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( B  =  ( p ` 
0 )  /\  d  =  ( p ` 
1 )  /\  A  =  ( p ` 
2 ) ) )  <->  <. B ,  d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A ) ) )
1512, 14syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  /\  c  e.  V )  /\  d  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  ->  ( E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( B  =  ( p `  0 )  /\  d  =  ( p `  1 )  /\  A  =  ( p `  2 ) ) )  <->  <. B , 
d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A ) ) )
16 3simpa 978 . . . . . . . . . . . . . . . 16  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) ) )
1716ad2antrr 718 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )  /\  P  e.  (
( V  X.  V
)  X.  V ) )  /\  c  e.  V )  /\  d  e.  V )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) ) )
1817ad2antrr 718 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  /\  c  e.  V )  /\  d  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) )
19 el2wlkonotot 30238 . . . . . . . . . . . . . . 15  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( <. A ,  c ,  B >.  e.  ( A ( V 2WalksOnOt  E ) B )  <->  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  c  =  ( p `  1 )  /\  B  =  ( p `  2 ) ) ) ) )
2019bicomd 201 . . . . . . . . . . . . . 14  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( E. f E. p ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  c  =  ( p ` 
1 )  /\  B  =  ( p ` 
2 ) ) )  <->  <. A ,  c ,  B >.  e.  ( A ( V 2WalksOnOt  E ) B ) ) )
2118, 20syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  /\  c  e.  V )  /\  d  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0
)  /\  c  =  ( p `  1
)  /\  B  =  ( p `  2
) ) )  <->  <. A , 
c ,  B >.  e.  ( A ( V 2WalksOnOt  E ) B ) ) )
22 frg2woteqm 30498 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( V FriendGrph  E  /\  A  =/= 
B )  ->  (
( <. A ,  c ,  B >.  e.  ( A ( V 2WalksOnOt  E ) B )  /\  <. B ,  d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A ) )  ->  d  =  c ) )
23 fveq2 5679 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( P  =  <. A ,  c ,  B >.  ->  ( 1st `  P )  =  ( 1st `  <. A ,  c ,  B >. ) )
2423fveq2d 5683 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( P  =  <. A ,  c ,  B >.  ->  ( 1st `  ( 1st `  P
) )  =  ( 1st `  ( 1st `  <. A ,  c ,  B >. )
) )
2524adantl 463 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( 1st `  ( 1st `  P
) )  =  ( 1st `  ( 1st `  <. A ,  c ,  B >. )
) )
2625adantl 463 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  ( 1st `  ( 1st `  P
) )  =  ( 1st `  ( 1st `  <. A ,  c ,  B >. )
) )
27 vex 2965 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  c  e. 
_V
28 ot1stg 6580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  V  /\  c  e.  _V  /\  B  e.  V )  ->  ( 1st `  ( 1st `  <. A ,  c ,  B >. ) )  =  A )
2927, 28mp3an2 1295 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( 1st `  ( 1st `  <. A ,  c ,  B >. )
)  =  A )
3029ad2antrr 718 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( 1st `  ( 1st `  <. A ,  c ,  B >. ) )  =  A )
3130adantl 463 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  ( 1st `  ( 1st `  <. A ,  c ,  B >. ) )  =  A )
32 fveq2 5679 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( Q  =  <. B ,  d ,  A >.  ->  ( 2nd `  Q )  =  ( 2nd `  <. B ,  d ,  A >. ) )
3332ad2antlr 719 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( 2nd `  Q )  =  ( 2nd `  <. B , 
d ,  A >. ) )
3433adantl 463 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  ( 2nd `  Q )  =  ( 2nd `  <. B ,  d ,  A >. ) )
35 ot3rdg 6582 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( A  e.  V  ->  ( 2nd `  <. B ,  d ,  A >. )  =  A )
3635adantr 462 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( 2nd `  <. B ,  d ,  A >. )  =  A )
3736ad2antrr 718 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( 2nd ` 
<. B ,  d ,  A >. )  =  A )
3837adantl 463 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  ( 2nd `  <. B ,  d ,  A >. )  =  A )
3934, 38eqtr2d 2466 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  A  =  ( 2nd `  Q
) )
4026, 31, 393eqtrd 2469 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  ( 1st `  ( 1st `  P
) )  =  ( 2nd `  Q ) )
41 eqidd 2434 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) ) )
42 fveq2 5679 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( Q  =  <. B ,  d ,  A >.  ->  ( 1st `  Q )  =  ( 1st `  <. B ,  d ,  A >. ) )
4342fveq2d 5683 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( Q  =  <. B ,  d ,  A >.  ->  ( 1st `  ( 1st `  Q
) )  =  ( 1st `  ( 1st `  <. B ,  d ,  A >. )
) )
4443ad2antlr 719 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( 1st `  ( 1st `  Q
) )  =  ( 1st `  ( 1st `  <. B ,  d ,  A >. )
) )
4544adantl 463 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  ( 1st `  ( 1st `  Q
) )  =  ( 1st `  ( 1st `  <. B ,  d ,  A >. )
) )
46 simpr 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  V  /\  B  e.  V )  ->  B  e.  V )
47 vex 2965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  d  e. 
_V
4847a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  V  /\  B  e.  V )  ->  d  e.  _V )
49 simpl 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  V  /\  B  e.  V )  ->  A  e.  V )
5046, 48, 493jca 1161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( B  e.  V  /\  d  e.  _V  /\  A  e.  V ) )
5150ad2antrr 718 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( B  e.  V  /\  d  e.  _V  /\  A  e.  V ) )
5251adantl 463 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  ( B  e.  V  /\  d  e.  _V  /\  A  e.  V ) )
53 ot1stg 6580 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( B  e.  V  /\  d  e.  _V  /\  A  e.  V )  ->  ( 1st `  ( 1st `  <. B ,  d ,  A >. ) )  =  B )
5452, 53syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  ( 1st `  ( 1st `  <. B ,  d ,  A >. ) )  =  B )
55 ot3rdg 6582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( B  e.  V  ->  ( 2nd `  <. A ,  c ,  B >. )  =  B )
5655adantl 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( 2nd `  <. A ,  c ,  B >. )  =  B )
5756ad2antrr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( 2nd ` 
<. A ,  c ,  B >. )  =  B )
5857adantl 463 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  ( 2nd `  <. A ,  c ,  B >. )  =  B )
5958eqcomd 2438 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  B  =  ( 2nd `  <. A ,  c ,  B >. ) )
60 simpr 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  P  =  <. A ,  c ,  B >. )
6160adantl 463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  P  =  <. A ,  c ,  B >. )
6261eqcomd 2438 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  <. A , 
c ,  B >.  =  P )
6362fveq2d 5683 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  ( 2nd `  <. A ,  c ,  B >. )  =  ( 2nd `  P
) )
6459, 63eqtrd 2465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  B  =  ( 2nd `  P
) )
6545, 54, 643eqtrd 2469 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  ( 1st `  ( 1st `  Q
) )  =  ( 2nd `  P ) )
6640, 41, 653jca 1161 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( d  =  c  /\  ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. ) )  ->  (
( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) )
6766ex 434 . . . . . . . . . . . . . . . . . . . . 21  |-  ( d  =  c  ->  (
( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( ( 1st `  ( 1st `  P
) )  =  ( 2nd `  Q )  /\  ( 2nd `  ( 1st `  P ) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) )
6822, 67syl6 33 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( V FriendGrph  E  /\  A  =/= 
B )  ->  (
( <. A ,  c ,  B >.  e.  ( A ( V 2WalksOnOt  E ) B )  /\  <. B ,  d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A ) )  ->  ( (
( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( ( 1st `  ( 1st `  P
) )  =  ( 2nd `  Q )  /\  ( 2nd `  ( 1st `  P ) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) )
6968exp3a 436 . . . . . . . . . . . . . . . . . . 19  |-  ( ( V FriendGrph  E  /\  A  =/= 
B )  ->  ( <. A ,  c ,  B >.  e.  ( A ( V 2WalksOnOt  E ) B )  ->  ( <. B ,  d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A )  ->  (
( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( ( 1st `  ( 1st `  P
) )  =  ( 2nd `  Q )  /\  ( 2nd `  ( 1st `  P ) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) )
7069com14 88 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  V  /\  B  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( <. A ,  c ,  B >.  e.  ( A ( V 2WalksOnOt  E ) B )  ->  ( <. B , 
d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A )  ->  ( ( V FriendGrph  E  /\  A  =/=  B
)  ->  ( ( 1st `  ( 1st `  P
) )  =  ( 2nd `  Q )  /\  ( 2nd `  ( 1st `  P ) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) )
7170ex 434 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  V  /\  B  e.  V
)  /\  Q  =  <. B ,  d ,  A >. )  ->  ( P  =  <. A , 
c ,  B >.  -> 
( <. A ,  c ,  B >.  e.  ( A ( V 2WalksOnOt  E ) B )  ->  ( <. B ,  d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A )  ->  (
( V FriendGrph  E  /\  A  =/=  B )  ->  (
( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) ) )
7271ex 434 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( Q  =  <. B ,  d ,  A >.  ->  ( P  = 
<. A ,  c ,  B >.  ->  ( <. A ,  c ,  B >.  e.  ( A ( V 2WalksOnOt  E ) B )  ->  ( <. B ,  d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A )  ->  (
( V FriendGrph  E  /\  A  =/=  B )  ->  (
( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) ) ) )
73723ad2ant2 1003 . . . . . . . . . . . . . . 15  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  ->  ( Q  =  <. B , 
d ,  A >.  -> 
( P  =  <. A ,  c ,  B >.  ->  ( <. A , 
c ,  B >.  e.  ( A ( V 2WalksOnOt  E ) B )  ->  ( <. B , 
d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A )  ->  ( ( V FriendGrph  E  /\  A  =/=  B
)  ->  ( ( 1st `  ( 1st `  P
) )  =  ( 2nd `  Q )  /\  ( 2nd `  ( 1st `  P ) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) ) ) )
7473ad2antrr 718 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )  /\  P  e.  (
( V  X.  V
)  X.  V ) )  /\  c  e.  V )  /\  d  e.  V )  ->  ( Q  =  <. B , 
d ,  A >.  -> 
( P  =  <. A ,  c ,  B >.  ->  ( <. A , 
c ,  B >.  e.  ( A ( V 2WalksOnOt  E ) B )  ->  ( <. B , 
d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A )  ->  ( ( V FriendGrph  E  /\  A  =/=  B
)  ->  ( ( 1st `  ( 1st `  P
) )  =  ( 2nd `  Q )  /\  ( 2nd `  ( 1st `  P ) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) ) ) )
7574imp31 432 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  /\  c  e.  V )  /\  d  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( <. A ,  c ,  B >.  e.  ( A ( V 2WalksOnOt  E ) B )  ->  ( <. B , 
d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A )  ->  ( ( V FriendGrph  E  /\  A  =/=  B
)  ->  ( ( 1st `  ( 1st `  P
) )  =  ( 2nd `  Q )  /\  ( 2nd `  ( 1st `  P ) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) )
7621, 75sylbid 215 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  /\  c  e.  V )  /\  d  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  /\  P  =  <. A ,  c ,  B >. )  ->  ( E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0
)  /\  c  =  ( p `  1
)  /\  B  =  ( p `  2
) ) )  -> 
( <. B ,  d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A )  ->  (
( V FriendGrph  E  /\  A  =/=  B )  ->  (
( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) )
7776expimpd 598 . . . . . . . . . . 11  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  /\  c  e.  V )  /\  d  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  ->  ( ( P  = 
<. A ,  c ,  B >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  c  =  ( p `  1 )  /\  B  =  ( p `  2 ) ) ) )  -> 
( <. B ,  d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A )  ->  (
( V FriendGrph  E  /\  A  =/=  B )  ->  (
( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) )
7877com23 78 . . . . . . . . . 10  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  /\  c  e.  V )  /\  d  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  ->  ( <. B ,  d ,  A >.  e.  ( B ( V 2WalksOnOt  E ) A )  ->  (
( P  =  <. A ,  c ,  B >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  c  =  ( p `  1 )  /\  B  =  ( p `  2 ) ) ) )  -> 
( ( V FriendGrph  E  /\  A  =/=  B )  -> 
( ( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) )
7915, 78sylbid 215 . . . . . . . . 9  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  /\  c  e.  V )  /\  d  e.  V )  /\  Q  =  <. B ,  d ,  A >. )  ->  ( E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( B  =  ( p `  0 )  /\  d  =  ( p `  1 )  /\  A  =  ( p `  2 ) ) )  ->  (
( P  =  <. A ,  c ,  B >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  c  =  ( p `  1 )  /\  B  =  ( p `  2 ) ) ) )  -> 
( ( V FriendGrph  E  /\  A  =/=  B )  -> 
( ( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) )
8079expimpd 598 . . . . . . . 8  |-  ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )  /\  P  e.  (
( V  X.  V
)  X.  V ) )  /\  c  e.  V )  /\  d  e.  V )  ->  (
( Q  =  <. B ,  d ,  A >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( B  =  ( p `  0 )  /\  d  =  ( p `  1 )  /\  A  =  ( p `  2 ) ) ) )  -> 
( ( P  = 
<. A ,  c ,  B >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  c  =  ( p `  1 )  /\  B  =  ( p `  2 ) ) ) )  -> 
( ( V FriendGrph  E  /\  A  =/=  B )  -> 
( ( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) )
8180rexlimdva 2831 . . . . . . 7  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )  /\  P  e.  (
( V  X.  V
)  X.  V ) )  /\  c  e.  V )  ->  ( E. d  e.  V  ( Q  =  <. B ,  d ,  A >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( B  =  ( p `  0 )  /\  d  =  ( p `  1 )  /\  A  =  ( p `  2 ) ) ) )  -> 
( ( P  = 
<. A ,  c ,  B >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  c  =  ( p `  1 )  /\  B  =  ( p `  2 ) ) ) )  -> 
( ( V FriendGrph  E  /\  A  =/=  B )  -> 
( ( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) )
8281com23 78 . . . . . 6  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )  /\  P  e.  (
( V  X.  V
)  X.  V ) )  /\  c  e.  V )  ->  (
( P  =  <. A ,  c ,  B >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  c  =  ( p `  1 )  /\  B  =  ( p `  2 ) ) ) )  -> 
( E. d  e.  V  ( Q  = 
<. B ,  d ,  A >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( B  =  ( p `  0 )  /\  d  =  ( p `  1 )  /\  A  =  ( p `  2 ) ) ) )  -> 
( ( V FriendGrph  E  /\  A  =/=  B )  -> 
( ( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) )
8382rexlimdva 2831 . . . . 5  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  ->  ( E. c  e.  V  ( P  =  <. A ,  c ,  B >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  c  =  ( p `  1 )  /\  B  =  ( p `  2 ) ) ) )  -> 
( E. d  e.  V  ( Q  = 
<. B ,  d ,  A >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( B  =  ( p `  0 )  /\  d  =  ( p `  1 )  /\  A  =  ( p `  2 ) ) ) )  -> 
( ( V FriendGrph  E  /\  A  =/=  B )  -> 
( ( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) ) )
8483imp3a 431 . . . 4  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  ->  (
( E. c  e.  V  ( P  = 
<. A ,  c ,  B >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  c  =  ( p `  1 )  /\  B  =  ( p `  2 ) ) ) )  /\  E. d  e.  V  ( Q  =  <. B , 
d ,  A >.  /\ 
E. f E. p
( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( B  =  ( p `  0 )  /\  d  =  ( p `  1 )  /\  A  =  ( p `  2 ) ) ) ) )  -> 
( ( V FriendGrph  E  /\  A  =/=  B )  -> 
( ( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) )
859, 84sylbid 215 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
)  /\  P  e.  ( ( V  X.  V )  X.  V
) )  ->  (
( P  e.  ( A ( V 2WalksOnOt  E ) B )  /\  Q  e.  ( B ( V 2WalksOnOt  E ) A ) )  ->  ( ( V FriendGrph  E  /\  A  =/= 
B )  ->  (
( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) ) )
862, 85mpcom 36 . 2  |-  ( ( P  e.  ( A ( V 2WalksOnOt  E ) B )  /\  Q  e.  ( B ( V 2WalksOnOt  E ) A ) )  ->  ( ( V FriendGrph  E  /\  A  =/= 
B )  ->  (
( 1st `  ( 1st `  P ) )  =  ( 2nd `  Q
)  /\  ( 2nd `  ( 1st `  P
) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) )
8786com12 31 1  |-  ( ( V FriendGrph  E  /\  A  =/= 
B )  ->  (
( P  e.  ( A ( V 2WalksOnOt  E ) B )  /\  Q  e.  ( B ( V 2WalksOnOt  E ) A ) )  ->  ( ( 1st `  ( 1st `  P
) )  =  ( 2nd `  Q )  /\  ( 2nd `  ( 1st `  P ) )  =  ( 2nd `  ( 1st `  P ) )  /\  ( 1st `  ( 1st `  Q ) )  =  ( 2nd `  P
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362   E.wex 1589    e. wcel 1755    =/= wne 2596   E.wrex 2706   _Vcvv 2962   <.cotp 3873   class class class wbr 4280    X. cxp 4825   ` cfv 5406  (class class class)co 6080   1stc1st 6564   2ndc2nd 6565   0cc0 9270   1c1 9271   2c2 10359   #chash 12087   Walks cwalk 23228   2WalksOnOt c2wlkonot 30220   FriendGrph cfrgra 30426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-ot 3874  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-n0 10568  df-z 10635  df-uz 10850  df-fz 11425  df-fzo 11533  df-hash 12088  df-word 12213  df-usgra 23089  df-wlk 23238  df-wlkon 23244  df-2wlkonot 30223  df-frgra 30427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator