MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresin Structured version   Unicode version

Theorem fresin 5577
Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
fresin  |-  ( F : A --> B  -> 
( F  |`  X ) : ( A  i^i  X ) --> B )

Proof of Theorem fresin
StepHypRef Expression
1 inss1 3567 . . 3  |-  ( A  i^i  X )  C_  A
2 fssres 5575 . . 3  |-  ( ( F : A --> B  /\  ( A  i^i  X ) 
C_  A )  -> 
( F  |`  ( A  i^i  X ) ) : ( A  i^i  X ) --> B )
31, 2mpan2 666 . 2  |-  ( F : A --> B  -> 
( F  |`  ( A  i^i  X ) ) : ( A  i^i  X ) --> B )
4 resres 5120 . . . 4  |-  ( ( F  |`  A )  |`  X )  =  ( F  |`  ( A  i^i  X ) )
5 ffn 5556 . . . . . 6  |-  ( F : A --> B  ->  F  Fn  A )
6 fnresdm 5517 . . . . . 6  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
75, 6syl 16 . . . . 5  |-  ( F : A --> B  -> 
( F  |`  A )  =  F )
87reseq1d 5105 . . . 4  |-  ( F : A --> B  -> 
( ( F  |`  A )  |`  X )  =  ( F  |`  X ) )
94, 8syl5eqr 2487 . . 3  |-  ( F : A --> B  -> 
( F  |`  ( A  i^i  X ) )  =  ( F  |`  X ) )
109feq1d 5543 . 2  |-  ( F : A --> B  -> 
( ( F  |`  ( A  i^i  X ) ) : ( A  i^i  X ) --> B  <-> 
( F  |`  X ) : ( A  i^i  X ) --> B ) )
113, 10mpbid 210 1  |-  ( F : A --> B  -> 
( F  |`  X ) : ( A  i^i  X ) --> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1364    i^i cin 3324    C_ wss 3325    |` cres 4838    Fn wfn 5410   -->wf 5411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-br 4290  df-opab 4348  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-fun 5417  df-fn 5418  df-f 5419
This theorem is referenced by:  o1res  13034  limcresi  21319  dvreslem  21343  dvres2lem  21344  noreson  27730  mbfresfi  28363
  Copyright terms: Public domain W3C validator