MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaunres2 Structured version   Visualization version   Unicode version

Theorem fresaunres2 5767
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fresaunres2  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  u.  G
)  |`  B )  =  G )

Proof of Theorem fresaunres2
StepHypRef Expression
1 ffn 5739 . . . 4  |-  ( F : A --> C  ->  F  Fn  A )
2 ffn 5739 . . . 4  |-  ( G : B --> C  ->  G  Fn  B )
3 id 22 . . . 4  |-  ( ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) )  ->  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B
) ) )
4 resasplit 5765 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
51, 2, 3, 4syl3an 1334 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
65reseq1d 5110 . 2  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  u.  G
)  |`  B )  =  ( ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  |`  B ) )
7 resundir 5125 . . 3  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) )  |`  B )  =  ( ( ( F  |`  ( A  i^i  B ) )  |`  B )  u.  (
( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A
) ) )  |`  B ) )
8 inss2 3644 . . . . . 6  |-  ( A  i^i  B )  C_  B
9 resabs2 5141 . . . . . 6  |-  ( ( A  i^i  B ) 
C_  B  ->  (
( F  |`  ( A  i^i  B ) )  |`  B )  =  ( F  |`  ( A  i^i  B ) ) )
108, 9ax-mp 5 . . . . 5  |-  ( ( F  |`  ( A  i^i  B ) )  |`  B )  =  ( F  |`  ( A  i^i  B ) )
11 resundir 5125 . . . . 5  |-  ( ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) )  |`  B )  =  ( ( ( F  |`  ( A  \  B ) )  |`  B )  u.  (
( G  |`  ( B  \  A ) )  |`  B ) )
1210, 11uneq12i 3577 . . . 4  |-  ( ( ( F  |`  ( A  i^i  B ) )  |`  B )  u.  (
( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A
) ) )  |`  B ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( ( ( F  |`  ( A  \  B ) )  |`  B )  u.  (
( G  |`  ( B  \  A ) )  |`  B ) ) )
13 dmres 5131 . . . . . . . . 9  |-  dom  (
( F  |`  ( A  \  B ) )  |`  B )  =  ( B  i^i  dom  ( F  |`  ( A  \  B ) ) )
14 dmres 5131 . . . . . . . . . . 11  |-  dom  ( F  |`  ( A  \  B ) )  =  ( ( A  \  B )  i^i  dom  F )
1514ineq2i 3622 . . . . . . . . . 10  |-  ( B  i^i  dom  ( F  |`  ( A  \  B
) ) )  =  ( B  i^i  (
( A  \  B
)  i^i  dom  F ) )
16 disjdif 3830 . . . . . . . . . . . 12  |-  ( B  i^i  ( A  \  B ) )  =  (/)
1716ineq1i 3621 . . . . . . . . . . 11  |-  ( ( B  i^i  ( A 
\  B ) )  i^i  dom  F )  =  ( (/)  i^i  dom  F )
18 inass 3633 . . . . . . . . . . 11  |-  ( ( B  i^i  ( A 
\  B ) )  i^i  dom  F )  =  ( B  i^i  ( ( A  \  B )  i^i  dom  F ) )
19 inss1 3643 . . . . . . . . . . . 12  |-  ( (/)  i^i 
dom  F )  C_  (/)
20 0ss 3766 . . . . . . . . . . . 12  |-  (/)  C_  ( (/) 
i^i  dom  F )
2119, 20eqssi 3434 . . . . . . . . . . 11  |-  ( (/)  i^i 
dom  F )  =  (/)
2217, 18, 213eqtr3i 2501 . . . . . . . . . 10  |-  ( B  i^i  ( ( A 
\  B )  i^i 
dom  F ) )  =  (/)
2315, 22eqtri 2493 . . . . . . . . 9  |-  ( B  i^i  dom  ( F  |`  ( A  \  B
) ) )  =  (/)
2413, 23eqtri 2493 . . . . . . . 8  |-  dom  (
( F  |`  ( A  \  B ) )  |`  B )  =  (/)
25 relres 5138 . . . . . . . . 9  |-  Rel  (
( F  |`  ( A  \  B ) )  |`  B )
26 reldm0 5058 . . . . . . . . 9  |-  ( Rel  ( ( F  |`  ( A  \  B ) )  |`  B )  ->  ( ( ( F  |`  ( A  \  B
) )  |`  B )  =  (/)  <->  dom  ( ( F  |`  ( A  \  B
) )  |`  B )  =  (/) ) )
2725, 26ax-mp 5 . . . . . . . 8  |-  ( ( ( F  |`  ( A  \  B ) )  |`  B )  =  (/)  <->  dom  ( ( F  |`  ( A  \  B ) )  |`  B )  =  (/) )
2824, 27mpbir 214 . . . . . . 7  |-  ( ( F  |`  ( A  \  B ) )  |`  B )  =  (/)
29 difss 3549 . . . . . . . 8  |-  ( B 
\  A )  C_  B
30 resabs2 5141 . . . . . . . 8  |-  ( ( B  \  A ) 
C_  B  ->  (
( G  |`  ( B  \  A ) )  |`  B )  =  ( G  |`  ( B  \  A ) ) )
3129, 30ax-mp 5 . . . . . . 7  |-  ( ( G  |`  ( B  \  A ) )  |`  B )  =  ( G  |`  ( B  \  A ) )
3228, 31uneq12i 3577 . . . . . 6  |-  ( ( ( F  |`  ( A  \  B ) )  |`  B )  u.  (
( G  |`  ( B  \  A ) )  |`  B ) )  =  ( (/)  u.  ( G  |`  ( B  \  A ) ) )
3332uneq2i 3576 . . . . 5  |-  ( ( F  |`  ( A  i^i  B ) )  u.  ( ( ( F  |`  ( A  \  B
) )  |`  B )  u.  ( ( G  |`  ( B  \  A
) )  |`  B ) ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( (/)  u.  ( G  |`  ( B  \  A ) ) ) )
34 simp3 1032 . . . . . . 7  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )
3534uneq1d 3578 . . . . . 6  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( (/)  u.  ( G  |`  ( B  \  A ) ) ) )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( (/)  u.  ( G  |`  ( B  \  A ) ) ) ) )
36 uncom 3569 . . . . . . . . . 10  |-  ( (/)  u.  ( G  |`  ( B  \  A ) ) )  =  ( ( G  |`  ( B  \  A ) )  u.  (/) )
37 un0 3762 . . . . . . . . . 10  |-  ( ( G  |`  ( B  \  A ) )  u.  (/) )  =  ( G  |`  ( B  \  A ) )
3836, 37eqtri 2493 . . . . . . . . 9  |-  ( (/)  u.  ( G  |`  ( B  \  A ) ) )  =  ( G  |`  ( B  \  A
) )
3938uneq2i 3576 . . . . . . . 8  |-  ( ( G  |`  ( A  i^i  B ) )  u.  ( (/)  u.  ( G  |`  ( B  \  A ) ) ) )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )
40 resundi 5124 . . . . . . . . 9  |-  ( G  |`  ( ( A  i^i  B )  u.  ( B 
\  A ) ) )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )
41 incom 3616 . . . . . . . . . . . . 13  |-  ( A  i^i  B )  =  ( B  i^i  A
)
4241uneq1i 3575 . . . . . . . . . . . 12  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  ( ( B  i^i  A )  u.  ( B 
\  A ) )
43 inundif 3836 . . . . . . . . . . . 12  |-  ( ( B  i^i  A )  u.  ( B  \  A ) )  =  B
4442, 43eqtri 2493 . . . . . . . . . . 11  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  B
4544reseq2i 5108 . . . . . . . . . 10  |-  ( G  |`  ( ( A  i^i  B )  u.  ( B 
\  A ) ) )  =  ( G  |`  B )
46 fnresdm 5695 . . . . . . . . . . . 12  |-  ( G  Fn  B  ->  ( G  |`  B )  =  G )
472, 46syl 17 . . . . . . . . . . 11  |-  ( G : B --> C  -> 
( G  |`  B )  =  G )
4847adantl 473 . . . . . . . . . 10  |-  ( ( F : A --> C  /\  G : B --> C )  ->  ( G  |`  B )  =  G )
4945, 48syl5eq 2517 . . . . . . . . 9  |-  ( ( F : A --> C  /\  G : B --> C )  ->  ( G  |`  ( ( A  i^i  B )  u.  ( B 
\  A ) ) )  =  G )
5040, 49syl5eqr 2519 . . . . . . . 8  |-  ( ( F : A --> C  /\  G : B --> C )  ->  ( ( G  |`  ( A  i^i  B
) )  u.  ( G  |`  ( B  \  A ) ) )  =  G )
5139, 50syl5eq 2517 . . . . . . 7  |-  ( ( F : A --> C  /\  G : B --> C )  ->  ( ( G  |`  ( A  i^i  B
) )  u.  ( (/) 
u.  ( G  |`  ( B  \  A ) ) ) )  =  G )
52513adant3 1050 . . . . . 6  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( G  |`  ( A  i^i  B ) )  u.  ( (/)  u.  ( G  |`  ( B  \  A ) ) ) )  =  G )
5335, 52eqtrd 2505 . . . . 5  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( (/)  u.  ( G  |`  ( B  \  A ) ) ) )  =  G )
5433, 53syl5eq 2517 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( ( ( F  |`  ( A  \  B ) )  |`  B )  u.  (
( G  |`  ( B  \  A ) )  |`  B ) ) )  =  G )
5512, 54syl5eq 2517 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  |`  B )  u.  ( ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) )  |`  B ) )  =  G )
567, 55syl5eq 2517 . 2  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  |`  B )  =  G )
576, 56eqtrd 2505 1  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  u.  G
)  |`  B )  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   dom cdm 4839    |` cres 4841   Rel wrel 4844    Fn wfn 5584   -->wf 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-br 4396  df-opab 4455  df-xp 4845  df-rel 4846  df-dm 4849  df-res 4851  df-fun 5591  df-fn 5592  df-f 5593
This theorem is referenced by:  fresaunres1  5768  mapunen  7759  ptuncnv  20899  cvmliftlem10  30089  elmapresaunres2  35685
  Copyright terms: Public domain W3C validator