MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaun Structured version   Unicode version

Theorem fresaun 5756
Description: The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fresaun  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G ) : ( A  u.  B ) --> C )

Proof of Theorem fresaun
StepHypRef Expression
1 simp1 996 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  F : A --> C )
2 inss1 3718 . . . 4  |-  ( A  i^i  B )  C_  A
3 fssres 5751 . . . 4  |-  ( ( F : A --> C  /\  ( A  i^i  B ) 
C_  A )  -> 
( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) --> C )
41, 2, 3sylancl 662 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) --> C )
5 difss 3631 . . . . 5  |-  ( A 
\  B )  C_  A
6 fssres 5751 . . . . 5  |-  ( ( F : A --> C  /\  ( A  \  B ) 
C_  A )  -> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) --> C )
71, 5, 6sylancl 662 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  |`  ( A  \  B ) ) : ( A  \  B
) --> C )
8 simp2 997 . . . . 5  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  G : B --> C )
9 difss 3631 . . . . 5  |-  ( B 
\  A )  C_  B
10 fssres 5751 . . . . 5  |-  ( ( G : B --> C  /\  ( B  \  A ) 
C_  B )  -> 
( G  |`  ( B  \  A ) ) : ( B  \  A ) --> C )
118, 9, 10sylancl 662 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( G  |`  ( B  \  A ) ) : ( B  \  A
) --> C )
12 indifdir 3754 . . . . . 6  |-  ( ( A  \  B )  i^i  ( B  \  A ) )  =  ( ( A  i^i  ( B  \  A ) )  \  ( B  i^i  ( B  \  A ) ) )
13 disjdif 3899 . . . . . . 7  |-  ( A  i^i  ( B  \  A ) )  =  (/)
1413difeq1i 3618 . . . . . 6  |-  ( ( A  i^i  ( B 
\  A ) ) 
\  ( B  i^i  ( B  \  A ) ) )  =  (
(/)  \  ( B  i^i  ( B  \  A
) ) )
15 0dif 3898 . . . . . 6  |-  ( (/)  \  ( B  i^i  ( B  \  A ) ) )  =  (/)
1612, 14, 153eqtri 2500 . . . . 5  |-  ( ( A  \  B )  i^i  ( B  \  A ) )  =  (/)
1716a1i 11 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( A  \  B
)  i^i  ( B  \  A ) )  =  (/) )
18 fun2 5749 . . . 4  |-  ( ( ( ( F  |`  ( A  \  B ) ) : ( A 
\  B ) --> C  /\  ( G  |`  ( B  \  A ) ) : ( B 
\  A ) --> C )  /\  ( ( A  \  B )  i^i  ( B  \  A ) )  =  (/) )  ->  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) : ( ( A  \  B )  u.  ( B  \  A ) ) --> C )
197, 11, 17, 18syl21anc 1227 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) : ( ( A  \  B
)  u.  ( B 
\  A ) ) --> C )
20 indi 3744 . . . . 5  |-  ( ( A  i^i  B )  i^i  ( ( A 
\  B )  u.  ( B  \  A
) ) )  =  ( ( ( A  i^i  B )  i^i  ( A  \  B
) )  u.  (
( A  i^i  B
)  i^i  ( B  \  A ) ) )
21 inass 3708 . . . . . . 7  |-  ( ( A  i^i  B )  i^i  ( A  \  B ) )  =  ( A  i^i  ( B  i^i  ( A  \  B ) ) )
22 disjdif 3899 . . . . . . . 8  |-  ( B  i^i  ( A  \  B ) )  =  (/)
2322ineq2i 3697 . . . . . . 7  |-  ( A  i^i  ( B  i^i  ( A  \  B ) ) )  =  ( A  i^i  (/) )
24 in0 3811 . . . . . . 7  |-  ( A  i^i  (/) )  =  (/)
2521, 23, 243eqtri 2500 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( A  \  B ) )  =  (/)
26 incom 3691 . . . . . . . 8  |-  ( A  i^i  B )  =  ( B  i^i  A
)
2726ineq1i 3696 . . . . . . 7  |-  ( ( A  i^i  B )  i^i  ( B  \  A ) )  =  ( ( B  i^i  A )  i^i  ( B 
\  A ) )
28 inass 3708 . . . . . . . 8  |-  ( ( B  i^i  A )  i^i  ( B  \  A ) )  =  ( B  i^i  ( A  i^i  ( B  \  A ) ) )
2913ineq2i 3697 . . . . . . . 8  |-  ( B  i^i  ( A  i^i  ( B  \  A ) ) )  =  ( B  i^i  (/) )
30 in0 3811 . . . . . . . 8  |-  ( B  i^i  (/) )  =  (/)
3128, 29, 303eqtri 2500 . . . . . . 7  |-  ( ( B  i^i  A )  i^i  ( B  \  A ) )  =  (/)
3227, 31eqtri 2496 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( B  \  A ) )  =  (/)
3325, 32uneq12i 3656 . . . . 5  |-  ( ( ( A  i^i  B
)  i^i  ( A  \  B ) )  u.  ( ( A  i^i  B )  i^i  ( B 
\  A ) ) )  =  ( (/)  u.  (/) )
34 un0 3810 . . . . 5  |-  ( (/)  u.  (/) )  =  (/)
3520, 33, 343eqtri 2500 . . . 4  |-  ( ( A  i^i  B )  i^i  ( ( A 
\  B )  u.  ( B  \  A
) ) )  =  (/)
3635a1i 11 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( A  i^i  B
)  i^i  ( ( A  \  B )  u.  ( B  \  A
) ) )  =  (/) )
37 fun2 5749 . . 3  |-  ( ( ( ( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) --> C  /\  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) : ( ( A 
\  B )  u.  ( B  \  A
) ) --> C )  /\  ( ( A  i^i  B )  i^i  ( ( A  \  B )  u.  ( B  \  A ) ) )  =  (/) )  -> 
( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( ( A  i^i  B
)  u.  ( ( A  \  B )  u.  ( B  \  A ) ) ) --> C )
384, 19, 36, 37syl21anc 1227 . 2  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( ( A  i^i  B )  u.  ( ( A 
\  B )  u.  ( B  \  A
) ) ) --> C )
39 ffn 5731 . . . . 5  |-  ( F : A --> C  ->  F  Fn  A )
40 ffn 5731 . . . . 5  |-  ( G : B --> C  ->  G  Fn  B )
41 id 22 . . . . 5  |-  ( ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) )  ->  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B
) ) )
42 resasplit 5755 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
4339, 40, 41, 42syl3an 1270 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
4443feq1d 5717 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  u.  G
) : ( A  u.  B ) --> C  <-> 
( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( A  u.  B ) --> C ) )
45 un12 3662 . . . . 5  |-  ( ( A  i^i  B )  u.  ( ( A 
\  B )  u.  ( B  \  A
) ) )  =  ( ( A  \  B )  u.  (
( A  i^i  B
)  u.  ( B 
\  A ) ) )
4626uneq1i 3654 . . . . . . 7  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  ( ( B  i^i  A )  u.  ( B 
\  A ) )
47 inundif 3905 . . . . . . 7  |-  ( ( B  i^i  A )  u.  ( B  \  A ) )  =  B
4846, 47eqtri 2496 . . . . . 6  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  B
4948uneq2i 3655 . . . . 5  |-  ( ( A  \  B )  u.  ( ( A  i^i  B )  u.  ( B  \  A
) ) )  =  ( ( A  \  B )  u.  B
)
50 undif1 3902 . . . . 5  |-  ( ( A  \  B )  u.  B )  =  ( A  u.  B
)
5145, 49, 503eqtri 2500 . . . 4  |-  ( ( A  i^i  B )  u.  ( ( A 
\  B )  u.  ( B  \  A
) ) )  =  ( A  u.  B
)
5251feq2i 5724 . . 3  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( ( A  i^i  B )  u.  ( ( A 
\  B )  u.  ( B  \  A
) ) ) --> C  <-> 
( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( A  u.  B ) --> C )
5344, 52syl6rbbr 264 . 2  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( ( A  i^i  B
)  u.  ( ( A  \  B )  u.  ( B  \  A ) ) ) --> C  <->  ( F  u.  G ) : ( A  u.  B ) --> C ) )
5438, 53mpbid 210 1  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G ) : ( A  u.  B ) --> C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1379    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785    |` cres 5001    Fn wfn 5583   -->wf 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-fun 5590  df-fn 5591  df-f 5592
This theorem is referenced by:  cvmliftlem10  28407  elmapresaun  30336
  Copyright terms: Public domain W3C validator