MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaun Structured version   Unicode version

Theorem fresaun 5768
Description: The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fresaun  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G ) : ( A  u.  B ) --> C )

Proof of Theorem fresaun
StepHypRef Expression
1 simp1 1005 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  F : A --> C )
2 inss1 3682 . . . 4  |-  ( A  i^i  B )  C_  A
3 fssres 5763 . . . 4  |-  ( ( F : A --> C  /\  ( A  i^i  B ) 
C_  A )  -> 
( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) --> C )
41, 2, 3sylancl 666 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) --> C )
5 difss 3592 . . . . 5  |-  ( A 
\  B )  C_  A
6 fssres 5763 . . . . 5  |-  ( ( F : A --> C  /\  ( A  \  B ) 
C_  A )  -> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) --> C )
71, 5, 6sylancl 666 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  |`  ( A  \  B ) ) : ( A  \  B
) --> C )
8 simp2 1006 . . . . 5  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  G : B --> C )
9 difss 3592 . . . . 5  |-  ( B 
\  A )  C_  B
10 fssres 5763 . . . . 5  |-  ( ( G : B --> C  /\  ( B  \  A ) 
C_  B )  -> 
( G  |`  ( B  \  A ) ) : ( B  \  A ) --> C )
118, 9, 10sylancl 666 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( G  |`  ( B  \  A ) ) : ( B  \  A
) --> C )
12 indifdir 3729 . . . . . 6  |-  ( ( A  \  B )  i^i  ( B  \  A ) )  =  ( ( A  i^i  ( B  \  A ) )  \  ( B  i^i  ( B  \  A ) ) )
13 disjdif 3867 . . . . . . 7  |-  ( A  i^i  ( B  \  A ) )  =  (/)
1413difeq1i 3579 . . . . . 6  |-  ( ( A  i^i  ( B 
\  A ) ) 
\  ( B  i^i  ( B  \  A ) ) )  =  (
(/)  \  ( B  i^i  ( B  \  A
) ) )
15 0dif 3866 . . . . . 6  |-  ( (/)  \  ( B  i^i  ( B  \  A ) ) )  =  (/)
1612, 14, 153eqtri 2455 . . . . 5  |-  ( ( A  \  B )  i^i  ( B  \  A ) )  =  (/)
1716a1i 11 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( A  \  B
)  i^i  ( B  \  A ) )  =  (/) )
18 fun2 5761 . . . 4  |-  ( ( ( ( F  |`  ( A  \  B ) ) : ( A 
\  B ) --> C  /\  ( G  |`  ( B  \  A ) ) : ( B 
\  A ) --> C )  /\  ( ( A  \  B )  i^i  ( B  \  A ) )  =  (/) )  ->  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) : ( ( A  \  B )  u.  ( B  \  A ) ) --> C )
197, 11, 17, 18syl21anc 1263 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) : ( ( A  \  B
)  u.  ( B 
\  A ) ) --> C )
20 indi 3719 . . . . 5  |-  ( ( A  i^i  B )  i^i  ( ( A 
\  B )  u.  ( B  \  A
) ) )  =  ( ( ( A  i^i  B )  i^i  ( A  \  B
) )  u.  (
( A  i^i  B
)  i^i  ( B  \  A ) ) )
21 inass 3672 . . . . . . 7  |-  ( ( A  i^i  B )  i^i  ( A  \  B ) )  =  ( A  i^i  ( B  i^i  ( A  \  B ) ) )
22 disjdif 3867 . . . . . . . 8  |-  ( B  i^i  ( A  \  B ) )  =  (/)
2322ineq2i 3661 . . . . . . 7  |-  ( A  i^i  ( B  i^i  ( A  \  B ) ) )  =  ( A  i^i  (/) )
24 in0 3788 . . . . . . 7  |-  ( A  i^i  (/) )  =  (/)
2521, 23, 243eqtri 2455 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( A  \  B ) )  =  (/)
26 incom 3655 . . . . . . . 8  |-  ( A  i^i  B )  =  ( B  i^i  A
)
2726ineq1i 3660 . . . . . . 7  |-  ( ( A  i^i  B )  i^i  ( B  \  A ) )  =  ( ( B  i^i  A )  i^i  ( B 
\  A ) )
28 inass 3672 . . . . . . . 8  |-  ( ( B  i^i  A )  i^i  ( B  \  A ) )  =  ( B  i^i  ( A  i^i  ( B  \  A ) ) )
2913ineq2i 3661 . . . . . . . 8  |-  ( B  i^i  ( A  i^i  ( B  \  A ) ) )  =  ( B  i^i  (/) )
30 in0 3788 . . . . . . . 8  |-  ( B  i^i  (/) )  =  (/)
3128, 29, 303eqtri 2455 . . . . . . 7  |-  ( ( B  i^i  A )  i^i  ( B  \  A ) )  =  (/)
3227, 31eqtri 2451 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( B  \  A ) )  =  (/)
3325, 32uneq12i 3618 . . . . 5  |-  ( ( ( A  i^i  B
)  i^i  ( A  \  B ) )  u.  ( ( A  i^i  B )  i^i  ( B 
\  A ) ) )  =  ( (/)  u.  (/) )
34 un0 3787 . . . . 5  |-  ( (/)  u.  (/) )  =  (/)
3520, 33, 343eqtri 2455 . . . 4  |-  ( ( A  i^i  B )  i^i  ( ( A 
\  B )  u.  ( B  \  A
) ) )  =  (/)
3635a1i 11 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( A  i^i  B
)  i^i  ( ( A  \  B )  u.  ( B  \  A
) ) )  =  (/) )
37 fun2 5761 . . 3  |-  ( ( ( ( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) --> C  /\  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) : ( ( A 
\  B )  u.  ( B  \  A
) ) --> C )  /\  ( ( A  i^i  B )  i^i  ( ( A  \  B )  u.  ( B  \  A ) ) )  =  (/) )  -> 
( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( ( A  i^i  B
)  u.  ( ( A  \  B )  u.  ( B  \  A ) ) ) --> C )
384, 19, 36, 37syl21anc 1263 . 2  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( ( A  i^i  B )  u.  ( ( A 
\  B )  u.  ( B  \  A
) ) ) --> C )
39 ffn 5743 . . . . 5  |-  ( F : A --> C  ->  F  Fn  A )
40 ffn 5743 . . . . 5  |-  ( G : B --> C  ->  G  Fn  B )
41 id 23 . . . . 5  |-  ( ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) )  ->  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B
) ) )
42 resasplit 5767 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
4339, 40, 41, 42syl3an 1306 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
4443feq1d 5729 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  u.  G
) : ( A  u.  B ) --> C  <-> 
( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( A  u.  B ) --> C ) )
45 un12 3624 . . . . 5  |-  ( ( A  i^i  B )  u.  ( ( A 
\  B )  u.  ( B  \  A
) ) )  =  ( ( A  \  B )  u.  (
( A  i^i  B
)  u.  ( B 
\  A ) ) )
4626uneq1i 3616 . . . . . . 7  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  ( ( B  i^i  A )  u.  ( B 
\  A ) )
47 inundif 3873 . . . . . . 7  |-  ( ( B  i^i  A )  u.  ( B  \  A ) )  =  B
4846, 47eqtri 2451 . . . . . 6  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  B
4948uneq2i 3617 . . . . 5  |-  ( ( A  \  B )  u.  ( ( A  i^i  B )  u.  ( B  \  A
) ) )  =  ( ( A  \  B )  u.  B
)
50 undif1 3870 . . . . 5  |-  ( ( A  \  B )  u.  B )  =  ( A  u.  B
)
5145, 49, 503eqtri 2455 . . . 4  |-  ( ( A  i^i  B )  u.  ( ( A 
\  B )  u.  ( B  \  A
) ) )  =  ( A  u.  B
)
5251feq2i 5736 . . 3  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( ( A  i^i  B )  u.  ( ( A 
\  B )  u.  ( B  \  A
) ) ) --> C  <-> 
( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( A  u.  B ) --> C )
5344, 52syl6rbbr 267 . 2  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( ( A  i^i  B
)  u.  ( ( A  \  B )  u.  ( B  \  A ) ) ) --> C  <->  ( F  u.  G ) : ( A  u.  B ) --> C ) )
5438, 53mpbid 213 1  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G ) : ( A  u.  B ) --> C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 982    = wceq 1437    \ cdif 3433    u. cun 3434    i^i cin 3435    C_ wss 3436   (/)c0 3761    |` cres 4852    Fn wfn 5593   -->wf 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pr 4657
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-sn 3997  df-pr 3999  df-op 4003  df-br 4421  df-opab 4480  df-id 4765  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-fun 5600  df-fn 5601  df-f 5602
This theorem is referenced by:  cvmliftlem10  30013  elmapresaun  35532
  Copyright terms: Public domain W3C validator