Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  freq1 Structured version   Unicode version

Theorem freq1 4799
 Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
freq1

Proof of Theorem freq1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4403 . . . . . 6
21notbid 294 . . . . 5
32rexralbidv 2881 . . . 4
43imbi2d 316 . . 3
54albidv 1680 . 2
6 df-fr 4788 . 2
7 df-fr 4788 . 2
85, 6, 73bitr4g 288 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 184   wa 369  wal 1368   wceq 1370   wne 2648  wral 2799  wrex 2800   wss 3437  c0 3746   class class class wbr 4401   wfr 4785 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-ext 2432 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1588  df-cleq 2446  df-clel 2449  df-ral 2804  df-rex 2805  df-br 4402  df-fr 4788 This theorem is referenced by:  weeq1  4817  freq12d  29540
 Copyright terms: Public domain W3C validator