Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege55lem2c Structured version   Visualization version   Unicode version

Theorem frege55lem2c 36557
Description: Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege55lem2c  |-  ( x  =  A  ->  [. A  /  z ]. z  =  x )
Distinct variable group:    x, z
Allowed substitution hints:    A( x, z)

Proof of Theorem frege55lem2c
StepHypRef Expression
1 vex 3059 . . 3  |-  x  e. 
_V
21frege54cor1c 36555 . 2  |-  [. x  /  z ]. z  =  x
3 frege53c 36554 . 2  |-  ( [. x  /  z ]. z  =  x  ->  ( x  =  A  ->  [. A  /  z ]. z  =  x ) )
42, 3ax-mp 5 1  |-  ( x  =  A  ->  [. A  /  z ]. z  =  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1454   _Vcvv 3056   [.wsbc 3278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-frege8 36449  ax-frege52c 36528
This theorem depends on definitions:  df-bi 190  df-an 377  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-v 3058  df-sbc 3279  df-sn 3980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator