Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege124d Structured version   Visualization version   Unicode version

Theorem frege124d 36347
Description: If  F is a function,  A is the successor of  X, and  B follows  X in the transitive closure of  F, then  A and  B are the same or  B follows  A in the transitive closure of  F. Similar to Proposition 124 of [Frege1879] p. 80. Compare with frege124 36577. (Contributed by RP, 16-Jul-2020.)
Hypotheses
Ref Expression
frege124d.f  |-  ( ph  ->  F  e.  _V )
frege124d.x  |-  ( ph  ->  X  e.  dom  F
)
frege124d.a  |-  ( ph  ->  A  =  ( F `
 X ) )
frege124d.xb  |-  ( ph  ->  X ( t+ `  F ) B )
frege124d.fun  |-  ( ph  ->  Fun  F )
Assertion
Ref Expression
frege124d  |-  ( ph  ->  ( A ( t+ `  F ) B  \/  A  =  B ) )

Proof of Theorem frege124d
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 frege124d.a . . 3  |-  ( ph  ->  A  =  ( F `
 X ) )
2 frege124d.fun . . . . 5  |-  ( ph  ->  Fun  F )
3 frege124d.xb . . . . . . 7  |-  ( ph  ->  X ( t+ `  F ) B )
41eqcomd 2456 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  X
)  =  A )
5 frege124d.x . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  dom  F
)
6 funbrfvb 5905 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( ( F `  X )  =  A  <-> 
X F A ) )
72, 5, 6syl2anc 666 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F `  X )  =  A  <-> 
X F A ) )
84, 7mpbid 214 . . . . . . . . . 10  |-  ( ph  ->  X F A )
9 funeu 5605 . . . . . . . . . 10  |-  ( ( Fun  F  /\  X F A )  ->  E! a  X F a )
102, 8, 9syl2anc 666 . . . . . . . . 9  |-  ( ph  ->  E! a  X F a )
11 fvex 5873 . . . . . . . . . . . . 13  |-  ( F `
 X )  e. 
_V
121, 11syl6eqel 2536 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  _V )
13 sbcan 3309 . . . . . . . . . . . . 13  |-  ( [. A  /  a ]. ( X F a  /\  -.  a ( t+ `  F ) B )  <->  ( [. A  /  a ]. X F a  /\  [. A  /  a ].  -.  a ( t+ `  F ) B ) )
14 sbcbr2g 4457 . . . . . . . . . . . . . . 15  |-  ( A  e.  _V  ->  ( [. A  /  a ]. X F a  <->  X F [_ A  /  a ]_ a ) )
15 csbvarg 3791 . . . . . . . . . . . . . . . 16  |-  ( A  e.  _V  ->  [_ A  /  a ]_ a  =  A )
1615breq2d 4413 . . . . . . . . . . . . . . 15  |-  ( A  e.  _V  ->  ( X F [_ A  / 
a ]_ a  <->  X F A ) )
1714, 16bitrd 257 . . . . . . . . . . . . . 14  |-  ( A  e.  _V  ->  ( [. A  /  a ]. X F a  <->  X F A ) )
18 sbcng 3307 . . . . . . . . . . . . . . 15  |-  ( A  e.  _V  ->  ( [. A  /  a ].  -.  a ( t+ `  F ) B  <->  -.  [. A  / 
a ]. a ( t+ `  F ) B ) )
19 sbcbr1g 4456 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  _V  ->  ( [. A  /  a ]. a ( t+ `  F ) B  <->  [_ A  /  a ]_ a ( t+ `  F ) B ) )
2015breq1d 4411 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  _V  ->  ( [_ A  /  a ]_ a ( t+ `  F ) B  <-> 
A ( t+ `  F ) B ) )
2119, 20bitrd 257 . . . . . . . . . . . . . . . 16  |-  ( A  e.  _V  ->  ( [. A  /  a ]. a ( t+ `  F ) B  <-> 
A ( t+ `  F ) B ) )
2221notbid 296 . . . . . . . . . . . . . . 15  |-  ( A  e.  _V  ->  ( -.  [. A  /  a ]. a ( t+ `  F ) B  <->  -.  A ( t+ `  F ) B ) )
2318, 22bitrd 257 . . . . . . . . . . . . . 14  |-  ( A  e.  _V  ->  ( [. A  /  a ].  -.  a ( t+ `  F ) B  <->  -.  A (
t+ `  F
) B ) )
2417, 23anbi12d 716 . . . . . . . . . . . . 13  |-  ( A  e.  _V  ->  (
( [. A  /  a ]. X F a  /\  [. A  /  a ].  -.  a ( t+ `  F ) B )  <->  ( X F A  /\  -.  A
( t+ `  F ) B ) ) )
2513, 24syl5bb 261 . . . . . . . . . . . 12  |-  ( A  e.  _V  ->  ( [. A  /  a ]. ( X F a  /\  -.  a ( t+ `  F
) B )  <->  ( X F A  /\  -.  A
( t+ `  F ) B ) ) )
2612, 25syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( [. A  / 
a ]. ( X F a  /\  -.  a
( t+ `  F ) B )  <-> 
( X F A  /\  -.  A ( t+ `  F
) B ) ) )
27 spesbc 3348 . . . . . . . . . . 11  |-  ( [. A  /  a ]. ( X F a  /\  -.  a ( t+ `  F ) B )  ->  E. a
( X F a  /\  -.  a ( t+ `  F
) B ) )
2826, 27syl6bir 233 . . . . . . . . . 10  |-  ( ph  ->  ( ( X F A  /\  -.  A
( t+ `  F ) B )  ->  E. a ( X F a  /\  -.  a ( t+ `  F ) B ) ) )
298, 28mpand 680 . . . . . . . . 9  |-  ( ph  ->  ( -.  A ( t+ `  F
) B  ->  E. a
( X F a  /\  -.  a ( t+ `  F
) B ) ) )
30 eupicka 2365 . . . . . . . . 9  |-  ( ( E! a  X F a  /\  E. a
( X F a  /\  -.  a ( t+ `  F
) B ) )  ->  A. a ( X F a  ->  -.  a ( t+ `  F ) B ) )
3110, 29, 30syl6an 548 . . . . . . . 8  |-  ( ph  ->  ( -.  A ( t+ `  F
) B  ->  A. a
( X F a  ->  -.  a (
t+ `  F
) B ) ) )
32 frege124d.f . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  _V )
33 funrel 5598 . . . . . . . . . . . . . 14  |-  ( Fun 
F  ->  Rel  F )
342, 33syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  Rel  F )
35 reltrclfv 13074 . . . . . . . . . . . . 13  |-  ( ( F  e.  _V  /\  Rel  F )  ->  Rel  ( t+ `  F ) )
3632, 34, 35syl2anc 666 . . . . . . . . . . . 12  |-  ( ph  ->  Rel  ( t+ `  F ) )
37 brrelex2 4873 . . . . . . . . . . . 12  |-  ( ( Rel  ( t+ `  F )  /\  X ( t+ `  F ) B )  ->  B  e.  _V )
3836, 3, 37syl2anc 666 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  _V )
39 brcog 5000 . . . . . . . . . . 11  |-  ( ( X  e.  dom  F  /\  B  e.  _V )  ->  ( X ( ( t+ `  F )  o.  F
) B  <->  E. a
( X F a  /\  a ( t+ `  F ) B ) ) )
405, 38, 39syl2anc 666 . . . . . . . . . 10  |-  ( ph  ->  ( X ( ( t+ `  F
)  o.  F ) B  <->  E. a ( X F a  /\  a
( t+ `  F ) B ) ) )
4140notbid 296 . . . . . . . . 9  |-  ( ph  ->  ( -.  X ( ( t+ `  F )  o.  F
) B  <->  -.  E. a
( X F a  /\  a ( t+ `  F ) B ) ) )
42 alinexa 1712 . . . . . . . . 9  |-  ( A. a ( X F a  ->  -.  a
( t+ `  F ) B )  <->  -.  E. a ( X F a  /\  a
( t+ `  F ) B ) )
4341, 42syl6rbbr 268 . . . . . . . 8  |-  ( ph  ->  ( A. a ( X F a  ->  -.  a ( t+ `  F ) B )  <->  -.  X (
( t+ `  F )  o.  F
) B ) )
4431, 43sylibd 218 . . . . . . 7  |-  ( ph  ->  ( -.  A ( t+ `  F
) B  ->  -.  X ( ( t+ `  F )  o.  F ) B ) )
45 brdif 4452 . . . . . . . 8  |-  ( X ( ( t+ `  F )  \ 
( ( t+ `  F )  o.  F ) ) B  <-> 
( X ( t+ `  F ) B  /\  -.  X
( ( t+ `  F )  o.  F ) B ) )
4645simplbi2 630 . . . . . . 7  |-  ( X ( t+ `  F ) B  -> 
( -.  X ( ( t+ `  F )  o.  F
) B  ->  X
( ( t+ `  F )  \ 
( ( t+ `  F )  o.  F ) ) B ) )
473, 44, 46sylsyld 58 . . . . . 6  |-  ( ph  ->  ( -.  A ( t+ `  F
) B  ->  X
( ( t+ `  F )  \ 
( ( t+ `  F )  o.  F ) ) B ) )
48 trclfvdecomr 36314 . . . . . . . . . . 11  |-  ( F  e.  _V  ->  (
t+ `  F
)  =  ( F  u.  ( ( t+ `  F )  o.  F ) ) )
4932, 48syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( t+ `  F )  =  ( F  u.  ( ( t+ `  F
)  o.  F ) ) )
50 uncom 3577 . . . . . . . . . 10  |-  ( F  u.  ( ( t+ `  F )  o.  F ) )  =  ( ( ( t+ `  F
)  o.  F )  u.  F )
5149, 50syl6eq 2500 . . . . . . . . 9  |-  ( ph  ->  ( t+ `  F )  =  ( ( ( t+ `  F )  o.  F )  u.  F
) )
52 eqimss 3483 . . . . . . . . 9  |-  ( ( t+ `  F
)  =  ( ( ( t+ `  F )  o.  F
)  u.  F )  ->  ( t+ `  F )  C_  ( ( ( t+ `  F )  o.  F )  u.  F ) )
5351, 52syl 17 . . . . . . . 8  |-  ( ph  ->  ( t+ `  F )  C_  (
( ( t+ `  F )  o.  F )  u.  F
) )
54 ssundif 3850 . . . . . . . 8  |-  ( ( t+ `  F
)  C_  ( (
( t+ `  F )  o.  F
)  u.  F )  <-> 
( ( t+ `  F )  \ 
( ( t+ `  F )  o.  F ) )  C_  F )
5553, 54sylib 200 . . . . . . 7  |-  ( ph  ->  ( ( t+ `  F )  \ 
( ( t+ `  F )  o.  F ) )  C_  F )
5655ssbrd 4443 . . . . . 6  |-  ( ph  ->  ( X ( ( t+ `  F
)  \  ( (
t+ `  F
)  o.  F ) ) B  ->  X F B ) )
5747, 56syld 45 . . . . 5  |-  ( ph  ->  ( -.  A ( t+ `  F
) B  ->  X F B ) )
58 funbrfv 5901 . . . . 5  |-  ( Fun 
F  ->  ( X F B  ->  ( F `
 X )  =  B ) )
592, 57, 58sylsyld 58 . . . 4  |-  ( ph  ->  ( -.  A ( t+ `  F
) B  ->  ( F `  X )  =  B ) )
60 eqcom 2457 . . . 4  |-  ( ( F `  X )  =  B  <->  B  =  ( F `  X ) )
6159, 60syl6ib 230 . . 3  |-  ( ph  ->  ( -.  A ( t+ `  F
) B  ->  B  =  ( F `  X ) ) )
62 eqtr3 2471 . . 3  |-  ( ( A  =  ( F `
 X )  /\  B  =  ( F `  X ) )  ->  A  =  B )
631, 61, 62syl6an 548 . 2  |-  ( ph  ->  ( -.  A ( t+ `  F
) B  ->  A  =  B ) )
6463orrd 380 1  |-  ( ph  ->  ( A ( t+ `  F ) B  \/  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371   A.wal 1441    = wceq 1443   E.wex 1662    e. wcel 1886   E!weu 2298   _Vcvv 3044   [.wsbc 3266   [_csb 3362    \ cdif 3400    u. cun 3401    C_ wss 3403   class class class wbr 4401   dom cdm 4833    o. ccom 4837   Rel wrel 4838   Fun wfun 5575   ` cfv 5581   t+ctcl 13042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-fal 1449  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-nn 10607  df-2 10665  df-n0 10867  df-z 10935  df-uz 11157  df-fz 11782  df-seq 12211  df-trcl 13044  df-relexp 13077
This theorem is referenced by:  frege126d  36348
  Copyright terms: Public domain W3C validator