MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwelem Structured version   Unicode version

Theorem fpwwelem 9052
Description: Lemma for fpwwe 9053. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
fpwwe.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
fpwwe.2  |-  ( ph  ->  A  e.  _V )
Assertion
Ref Expression
fpwwelem  |-  ( ph  ->  ( X W R  <-> 
( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  ( F `  ( `' R " { y } ) )  =  y ) ) ) )
Distinct variable groups:    x, r, A    y, r, F, x    ph, r, x, y    R, r, x, y    X, r, x, y    W, r, x, y
Allowed substitution hint:    A( y)

Proof of Theorem fpwwelem
StepHypRef Expression
1 fpwwe.1 . . . . 5  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
21relopabi 4947 . . . 4  |-  Rel  W
32a1i 11 . . 3  |-  ( ph  ->  Rel  W )
4 brrelex12 4860 . . 3  |-  ( ( Rel  W  /\  X W R )  ->  ( X  e.  _V  /\  R  e.  _V ) )
53, 4sylan 469 . 2  |-  ( (
ph  /\  X W R )  ->  ( X  e.  _V  /\  R  e.  _V ) )
6 fpwwe.2 . . . . 5  |-  ( ph  ->  A  e.  _V )
76adantr 463 . . . 4  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  ( F `  ( `' R " { y } ) )  =  y ) ) )  ->  A  e.  _V )
8 simprll 764 . . . 4  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  ( F `  ( `' R " { y } ) )  =  y ) ) )  ->  X  C_  A
)
97, 8ssexd 4540 . . 3  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  ( F `  ( `' R " { y } ) )  =  y ) ) )  ->  X  e.  _V )
10 xpexg 6583 . . . . 5  |-  ( ( X  e.  _V  /\  X  e.  _V )  ->  ( X  X.  X
)  e.  _V )
119, 9, 10syl2anc 659 . . . 4  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  ( F `  ( `' R " { y } ) )  =  y ) ) )  ->  ( X  X.  X )  e.  _V )
12 simprlr 765 . . . 4  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  ( F `  ( `' R " { y } ) )  =  y ) ) )  ->  R  C_  ( X  X.  X ) )
1311, 12ssexd 4540 . . 3  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  ( F `  ( `' R " { y } ) )  =  y ) ) )  ->  R  e.  _V )
149, 13jca 530 . 2  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  ( F `  ( `' R " { y } ) )  =  y ) ) )  ->  ( X  e. 
_V  /\  R  e.  _V ) )
15 simpl 455 . . . . . 6  |-  ( ( x  =  X  /\  r  =  R )  ->  x  =  X )
1615sseq1d 3468 . . . . 5  |-  ( ( x  =  X  /\  r  =  R )  ->  ( x  C_  A  <->  X 
C_  A ) )
17 simpr 459 . . . . . 6  |-  ( ( x  =  X  /\  r  =  R )  ->  r  =  R )
1815sqxpeqd 4848 . . . . . 6  |-  ( ( x  =  X  /\  r  =  R )  ->  ( x  X.  x
)  =  ( X  X.  X ) )
1917, 18sseq12d 3470 . . . . 5  |-  ( ( x  =  X  /\  r  =  R )  ->  ( r  C_  (
x  X.  x )  <-> 
R  C_  ( X  X.  X ) ) )
2016, 19anbi12d 709 . . . 4  |-  ( ( x  =  X  /\  r  =  R )  ->  ( ( x  C_  A  /\  r  C_  (
x  X.  x ) )  <->  ( X  C_  A  /\  R  C_  ( X  X.  X ) ) ) )
21 weeq2 4811 . . . . . 6  |-  ( x  =  X  ->  (
r  We  x  <->  r  We  X ) )
22 weeq1 4810 . . . . . 6  |-  ( r  =  R  ->  (
r  We  X  <->  R  We  X ) )
2321, 22sylan9bb 698 . . . . 5  |-  ( ( x  =  X  /\  r  =  R )  ->  ( r  We  x  <->  R  We  X ) )
2417cnveqd 4998 . . . . . . . . 9  |-  ( ( x  =  X  /\  r  =  R )  ->  `' r  =  `' R )
2524imaeq1d 5155 . . . . . . . 8  |-  ( ( x  =  X  /\  r  =  R )  ->  ( `' r " { y } )  =  ( `' R " { y } ) )
2625fveq2d 5852 . . . . . . 7  |-  ( ( x  =  X  /\  r  =  R )  ->  ( F `  ( `' r " {
y } ) )  =  ( F `  ( `' R " { y } ) ) )
2726eqeq1d 2404 . . . . . 6  |-  ( ( x  =  X  /\  r  =  R )  ->  ( ( F `  ( `' r " {
y } ) )  =  y  <->  ( F `  ( `' R " { y } ) )  =  y ) )
2815, 27raleqbidv 3017 . . . . 5  |-  ( ( x  =  X  /\  r  =  R )  ->  ( A. y  e.  x  ( F `  ( `' r " {
y } ) )  =  y  <->  A. y  e.  X  ( F `  ( `' R " { y } ) )  =  y ) )
2923, 28anbi12d 709 . . . 4  |-  ( ( x  =  X  /\  r  =  R )  ->  ( ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y )  <-> 
( R  We  X  /\  A. y  e.  X  ( F `  ( `' R " { y } ) )  =  y ) ) )
3020, 29anbi12d 709 . . 3  |-  ( ( x  =  X  /\  r  =  R )  ->  ( ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) )  <->  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  ( F `  ( `' R " { y } ) )  =  y ) ) ) )
3130, 1brabga 4703 . 2  |-  ( ( X  e.  _V  /\  R  e.  _V )  ->  ( X W R  <-> 
( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  ( F `  ( `' R " { y } ) )  =  y ) ) ) )
325, 14, 31pm5.21nd 901 1  |-  ( ph  ->  ( X W R  <-> 
( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  ( F `  ( `' R " { y } ) )  =  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2753   _Vcvv 3058    C_ wss 3413   {csn 3971   class class class wbr 4394   {copab 4451    We wwe 4780    X. cxp 4820   `'ccnv 4821   "cima 4825   Rel wrel 4827   ` cfv 5568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-iota 5532  df-fv 5576
This theorem is referenced by:  canth4  9054  canthnumlem  9055  canthp1lem2  9060
  Copyright terms: Public domain W3C validator