MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem9 Unicode version

Theorem fpwwe2lem9 8469
Description: Lemma for fpwwe2 8474. Given two well-orders  <. X ,  R >. and  <. Y ,  S >. of parts of  A, one is an initial segment of the other. (The  O  C_  P hypothesis is in order to break the symmetry of  X and  Y.) (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
fpwwe2.2  |-  ( ph  ->  A  e.  _V )
fpwwe2.3  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x F r )  e.  A )
fpwwe2lem9.x  |-  ( ph  ->  X W R )
fpwwe2lem9.y  |-  ( ph  ->  Y W S )
fpwwe2lem9.m  |-  M  = OrdIso
( R ,  X
)
fpwwe2lem9.n  |-  N  = OrdIso
( S ,  Y
)
fpwwe2lem9.s  |-  ( ph  ->  dom  M  C_  dom  N )
Assertion
Ref Expression
fpwwe2lem9  |-  ( ph  ->  ( X  C_  Y  /\  R  =  ( S  i^i  ( Y  X.  X ) ) ) )
Distinct variable groups:    y, u, r, x, F    X, r, u, x, y    M, r, u, x, y    N, r, u, x, y    ph, r, u, x, y    A, r, x    R, r, u, x, y    Y, r, u, x, y    S, r, u, x, y    W, r, u, x, y
Allowed substitution hints:    A( y, u)

Proof of Theorem fpwwe2lem9
StepHypRef Expression
1 fpwwe2lem9.x . . . . . . . . 9  |-  ( ph  ->  X W R )
2 fpwwe2.1 . . . . . . . . . . 11  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
32relopabi 4959 . . . . . . . . . 10  |-  Rel  W
43brrelexi 4877 . . . . . . . . 9  |-  ( X W R  ->  X  e.  _V )
51, 4syl 16 . . . . . . . 8  |-  ( ph  ->  X  e.  _V )
6 fpwwe2.2 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  _V )
72, 6fpwwe2lem2 8463 . . . . . . . . . . 11  |-  ( ph  ->  ( X W R  <-> 
( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) ) )
81, 7mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )
98simprd 450 . . . . . . . . 9  |-  ( ph  ->  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. (
u F ( R  i^i  ( u  X.  u ) ) )  =  y ) )
109simpld 446 . . . . . . . 8  |-  ( ph  ->  R  We  X )
11 fpwwe2lem9.m . . . . . . . . 9  |-  M  = OrdIso
( R ,  X
)
1211oiiso 7462 . . . . . . . 8  |-  ( ( X  e.  _V  /\  R  We  X )  ->  M  Isom  _E  ,  R  ( dom  M ,  X
) )
135, 10, 12syl2anc 643 . . . . . . 7  |-  ( ph  ->  M  Isom  _E  ,  R  ( dom  M ,  X
) )
14 isof1o 6004 . . . . . . 7  |-  ( M 
Isom  _E  ,  R  ( dom  M ,  X
)  ->  M : dom  M -1-1-onto-> X )
1513, 14syl 16 . . . . . 6  |-  ( ph  ->  M : dom  M -1-1-onto-> X
)
16 f1ofo 5640 . . . . . 6  |-  ( M : dom  M -1-1-onto-> X  ->  M : dom  M -onto-> X
)
17 forn 5615 . . . . . 6  |-  ( M : dom  M -onto-> X  ->  ran  M  =  X )
1815, 16, 173syl 19 . . . . 5  |-  ( ph  ->  ran  M  =  X )
19 fpwwe2.3 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x F r )  e.  A )
20 fpwwe2lem9.y . . . . . . 7  |-  ( ph  ->  Y W S )
21 fpwwe2lem9.n . . . . . . 7  |-  N  = OrdIso
( S ,  Y
)
22 fpwwe2lem9.s . . . . . . 7  |-  ( ph  ->  dom  M  C_  dom  N )
232, 6, 19, 1, 20, 11, 21, 22fpwwe2lem8 8468 . . . . . 6  |-  ( ph  ->  M  =  ( N  |`  dom  M ) )
2423rneqd 5056 . . . . 5  |-  ( ph  ->  ran  M  =  ran  ( N  |`  dom  M
) )
2518, 24eqtr3d 2438 . . . 4  |-  ( ph  ->  X  =  ran  ( N  |`  dom  M ) )
26 df-ima 4850 . . . 4  |-  ( N
" dom  M )  =  ran  ( N  |`  dom  M )
2725, 26syl6eqr 2454 . . 3  |-  ( ph  ->  X  =  ( N
" dom  M )
)
28 imassrn 5175 . . . 4  |-  ( N
" dom  M )  C_ 
ran  N
293brrelexi 4877 . . . . . . . 8  |-  ( Y W S  ->  Y  e.  _V )
3020, 29syl 16 . . . . . . 7  |-  ( ph  ->  Y  e.  _V )
312, 6fpwwe2lem2 8463 . . . . . . . . . 10  |-  ( ph  ->  ( Y W S  <-> 
( ( Y  C_  A  /\  S  C_  ( Y  X.  Y ) )  /\  ( S  We  Y  /\  A. y  e.  Y  [. ( `' S " { y } )  /  u ]. ( u F ( S  i^i  ( u  X.  u ) ) )  =  y ) ) ) )
3220, 31mpbid 202 . . . . . . . . 9  |-  ( ph  ->  ( ( Y  C_  A  /\  S  C_  ( Y  X.  Y ) )  /\  ( S  We  Y  /\  A. y  e.  Y  [. ( `' S " { y } )  /  u ]. ( u F ( S  i^i  ( u  X.  u ) ) )  =  y ) ) )
3332simprd 450 . . . . . . . 8  |-  ( ph  ->  ( S  We  Y  /\  A. y  e.  Y  [. ( `' S " { y } )  /  u ]. (
u F ( S  i^i  ( u  X.  u ) ) )  =  y ) )
3433simpld 446 . . . . . . 7  |-  ( ph  ->  S  We  Y )
3521oiiso 7462 . . . . . . 7  |-  ( ( Y  e.  _V  /\  S  We  Y )  ->  N  Isom  _E  ,  S  ( dom  N ,  Y
) )
3630, 34, 35syl2anc 643 . . . . . 6  |-  ( ph  ->  N  Isom  _E  ,  S  ( dom  N ,  Y
) )
37 isof1o 6004 . . . . . 6  |-  ( N 
Isom  _E  ,  S  ( dom  N ,  Y
)  ->  N : dom  N -1-1-onto-> Y )
3836, 37syl 16 . . . . 5  |-  ( ph  ->  N : dom  N -1-1-onto-> Y
)
39 f1ofo 5640 . . . . 5  |-  ( N : dom  N -1-1-onto-> Y  ->  N : dom  N -onto-> Y
)
40 forn 5615 . . . . 5  |-  ( N : dom  N -onto-> Y  ->  ran  N  =  Y )
4138, 39, 403syl 19 . . . 4  |-  ( ph  ->  ran  N  =  Y )
4228, 41syl5sseq 3356 . . 3  |-  ( ph  ->  ( N " dom  M )  C_  Y )
4327, 42eqsstrd 3342 . 2  |-  ( ph  ->  X  C_  Y )
448simpld 446 . . . . . 6  |-  ( ph  ->  ( X  C_  A  /\  R  C_  ( X  X.  X ) ) )
4544simprd 450 . . . . 5  |-  ( ph  ->  R  C_  ( X  X.  X ) )
46 relxp 4942 . . . . 5  |-  Rel  ( X  X.  X )
47 relss 4922 . . . . 5  |-  ( R 
C_  ( X  X.  X )  ->  ( Rel  ( X  X.  X
)  ->  Rel  R ) )
4845, 46, 47ee10 1382 . . . 4  |-  ( ph  ->  Rel  R )
49 inss2 3522 . . . . 5  |-  ( S  i^i  ( Y  X.  X ) )  C_  ( Y  X.  X
)
50 relxp 4942 . . . . 5  |-  Rel  ( Y  X.  X )
51 relss 4922 . . . . 5  |-  ( ( S  i^i  ( Y  X.  X ) ) 
C_  ( Y  X.  X )  ->  ( Rel  ( Y  X.  X
)  ->  Rel  ( S  i^i  ( Y  X.  X ) ) ) )
5249, 50, 51mp2 9 . . . 4  |-  Rel  ( S  i^i  ( Y  X.  X ) )
5348, 52jctir 525 . . 3  |-  ( ph  ->  ( Rel  R  /\  Rel  ( S  i^i  ( Y  X.  X ) ) ) )
5445ssbrd 4213 . . . . . . 7  |-  ( ph  ->  ( x R y  ->  x ( X  X.  X ) y ) )
55 brxp 4868 . . . . . . 7  |-  ( x ( X  X.  X
) y  <->  ( x  e.  X  /\  y  e.  X ) )
5654, 55syl6ib 218 . . . . . 6  |-  ( ph  ->  ( x R y  ->  ( x  e.  X  /\  y  e.  X ) ) )
57 brinxp2 4898 . . . . . . . 8  |-  ( x ( S  i^i  ( Y  X.  X ) ) y  <->  ( x  e.  Y  /\  y  e.  X  /\  x S y ) )
58 df-3an 938 . . . . . . . 8  |-  ( ( x  e.  Y  /\  y  e.  X  /\  x S y )  <->  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )
5957, 58bitri 241 . . . . . . 7  |-  ( x ( S  i^i  ( Y  X.  X ) ) y  <->  ( ( x  e.  Y  /\  y  e.  X )  /\  x S y ) )
60 simprll 739 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  x  e.  Y )
61 simprr 734 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  x S
y )
62 isocnv 6009 . . . . . . . . . . . . . . . . 17  |-  ( N 
Isom  _E  ,  S  ( dom  N ,  Y
)  ->  `' N  Isom  S ,  _E  ( Y ,  dom  N ) )
6336, 62syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  `' N  Isom  S ,  _E  ( Y ,  dom  N ) )
6463adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  `' N  Isom  S ,  _E  ( Y ,  dom  N ) )
6543adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  X  C_  Y
)
66 simprlr 740 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  y  e.  X )
6765, 66sseldd 3309 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  y  e.  Y )
68 isorel 6005 . . . . . . . . . . . . . . 15  |-  ( ( `' N  Isom  S ,  _E  ( Y ,  dom  N )  /\  ( x  e.  Y  /\  y  e.  Y ) )  -> 
( x S y  <-> 
( `' N `  x )  _E  ( `' N `  y ) ) )
6964, 60, 67, 68syl12anc 1182 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  ( x S y  <->  ( `' N `  x )  _E  ( `' N `  y ) ) )
7061, 69mpbid 202 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  ( `' N `  x )  _E  ( `' N `  y ) )
71 fvex 5701 . . . . . . . . . . . . . 14  |-  ( `' N `  y )  e.  _V
7271epelc 4456 . . . . . . . . . . . . 13  |-  ( ( `' N `  x )  _E  ( `' N `  y )  <->  ( `' N `  x )  e.  ( `' N `  y ) )
7370, 72sylib 189 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  ( `' N `  x )  e.  ( `' N `  y ) )
7423adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  M  =  ( N  |`  dom  M
) )
7574cnveqd 5007 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  `' M  =  `' ( N  |`  dom  M ) )
76 isof1o 6004 . . . . . . . . . . . . . . . . . 18  |-  ( `' N  Isom  S ,  _E  ( Y ,  dom  N )  ->  `' N : Y -1-1-onto-> dom  N )
77 f1ofn 5634 . . . . . . . . . . . . . . . . . 18  |-  ( `' N : Y -1-1-onto-> dom  N  ->  `' N  Fn  Y
)
7864, 76, 773syl 19 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  `' N  Fn  Y )
79 fnfun 5501 . . . . . . . . . . . . . . . . 17  |-  ( `' N  Fn  Y  ->  Fun  `' N )
80 funcnvres 5481 . . . . . . . . . . . . . . . . 17  |-  ( Fun  `' N  ->  `' ( N  |`  dom  M )  =  ( `' N  |`  ( N " dom  M ) ) )
8178, 79, 803syl 19 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  `' ( N  |`  dom  M )  =  ( `' N  |`  ( N " dom  M ) ) )
8275, 81eqtrd 2436 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  `' M  =  ( `' N  |`  ( N " dom  M ) ) )
8382fveq1d 5689 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  ( `' M `  y )  =  ( ( `' N  |`  ( N " dom  M ) ) `
 y ) )
8427adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  X  =  ( N " dom  M
) )
8566, 84eleqtrd 2480 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  y  e.  ( N " dom  M
) )
86 fvres 5704 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( N " dom  M )  ->  (
( `' N  |`  ( N " dom  M
) ) `  y
)  =  ( `' N `  y ) )
8785, 86syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  ( ( `' N  |`  ( N
" dom  M )
) `  y )  =  ( `' N `  y ) )
8883, 87eqtrd 2436 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  ( `' M `  y )  =  ( `' N `  y ) )
89 isocnv 6009 . . . . . . . . . . . . . . . . 17  |-  ( M 
Isom  _E  ,  R  ( dom  M ,  X
)  ->  `' M  Isom  R ,  _E  ( X ,  dom  M ) )
9013, 89syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  `' M  Isom  R ,  _E  ( X ,  dom  M ) )
91 isof1o 6004 . . . . . . . . . . . . . . . 16  |-  ( `' M  Isom  R ,  _E  ( X ,  dom  M )  ->  `' M : X -1-1-onto-> dom  M )
92 f1of 5633 . . . . . . . . . . . . . . . 16  |-  ( `' M : X -1-1-onto-> dom  M  ->  `' M : X --> dom  M
)
9390, 91, 923syl 19 . . . . . . . . . . . . . . 15  |-  ( ph  ->  `' M : X --> dom  M
)
9493adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  `' M : X --> dom  M )
9594, 66ffvelrnd 5830 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  ( `' M `  y )  e.  dom  M )
9688, 95eqeltrrd 2479 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  ( `' N `  y )  e.  dom  M )
9711oicl 7454 . . . . . . . . . . . . 13  |-  Ord  dom  M
98 ordtr1 4584 . . . . . . . . . . . . 13  |-  ( Ord 
dom  M  ->  ( ( ( `' N `  x )  e.  ( `' N `  y )  /\  ( `' N `  y )  e.  dom  M )  ->  ( `' N `  x )  e.  dom  M ) )
9997, 98ax-mp 8 . . . . . . . . . . . 12  |-  ( ( ( `' N `  x )  e.  ( `' N `  y )  /\  ( `' N `  y )  e.  dom  M )  ->  ( `' N `  x )  e.  dom  M )
10073, 96, 99syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  ( `' N `  x )  e.  dom  M )
101 elpreima 5809 . . . . . . . . . . . 12  |-  ( `' N  Fn  Y  -> 
( x  e.  ( `' `' N " dom  M
)  <->  ( x  e.  Y  /\  ( `' N `  x )  e.  dom  M ) ) )
10278, 101syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  ( x  e.  ( `' `' N " dom  M )  <->  ( x  e.  Y  /\  ( `' N `  x )  e.  dom  M ) ) )
10360, 100, 102mpbir2and 889 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  x  e.  ( `' `' N " dom  M
) )
104 imacnvcnv 5293 . . . . . . . . . . 11  |-  ( `' `' N " dom  M
)  =  ( N
" dom  M )
10584, 104syl6eqr 2454 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  X  =  ( `' `' N " dom  M
) )
106103, 105eleqtrrd 2481 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  x  e.  X )
107106, 66jca 519 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  Y  /\  y  e.  X )  /\  x S y ) )  ->  ( x  e.  X  /\  y  e.  X ) )
108107ex 424 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  Y  /\  y  e.  X )  /\  x S y )  -> 
( x  e.  X  /\  y  e.  X
) ) )
10959, 108syl5bi 209 . . . . . 6  |-  ( ph  ->  ( x ( S  i^i  ( Y  X.  X ) ) y  ->  ( x  e.  X  /\  y  e.  X ) ) )
11023adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  M  =  ( N  |` 
dom  M ) )
111110cnveqd 5007 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  `' M  =  `' ( N  |`  dom  M
) )
112111fveq1d 5689 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( `' M `  x )  =  ( `' ( N  |`  dom  M ) `  x
) )
113111fveq1d 5689 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( `' M `  y )  =  ( `' ( N  |`  dom  M ) `  y
) )
114112, 113breq12d 4185 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( `' M `  x )  _E  ( `' M `  y )  <-> 
( `' ( N  |`  dom  M ) `  x )  _E  ( `' ( N  |`  dom  M ) `  y
) ) )
115 isorel 6005 . . . . . . . . . 10  |-  ( ( `' M  Isom  R ,  _E  ( X ,  dom  M )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x R y  <-> 
( `' M `  x )  _E  ( `' M `  y ) ) )
11690, 115sylan 458 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x R y  <-> 
( `' M `  x )  _E  ( `' M `  y ) ) )
117 eqidd 2405 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N " dom  M )  =  ( N
" dom  M )
)
118 isores3 6014 . . . . . . . . . . . . 13  |-  ( ( N  Isom  _E  ,  S  ( dom  N ,  Y
)  /\  dom  M  C_  dom  N  /\  ( N
" dom  M )  =  ( N " dom  M ) )  -> 
( N  |`  dom  M
)  Isom  _E  ,  S  ( dom  M ,  ( N " dom  M
) ) )
11936, 22, 117, 118syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  |`  dom  M
)  Isom  _E  ,  S  ( dom  M ,  ( N " dom  M
) ) )
120 isocnv 6009 . . . . . . . . . . . 12  |-  ( ( N  |`  dom  M ) 
Isom  _E  ,  S  ( dom  M ,  ( N " dom  M
) )  ->  `' ( N  |`  dom  M
)  Isom  S ,  _E  ( ( N " dom  M ) ,  dom  M ) )
121119, 120syl 16 . . . . . . . . . . 11  |-  ( ph  ->  `' ( N  |`  dom  M )  Isom  S ,  _E  ( ( N " dom  M ) ,  dom  M ) )
122121adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  `' ( N  |`  dom  M )  Isom  S ,  _E  ( ( N " dom  M ) ,  dom  M ) )
123 simprl 733 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  x  e.  X )
12427adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  X  =  ( N " dom  M ) )
125123, 124eleqtrd 2480 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  x  e.  ( N " dom  M ) )
126 simprr 734 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
y  e.  X )
127126, 124eleqtrd 2480 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
y  e.  ( N
" dom  M )
)
128 isorel 6005 . . . . . . . . . 10  |-  ( ( `' ( N  |`  dom  M )  Isom  S ,  _E  ( ( N " dom  M ) ,  dom  M )  /\  ( x  e.  ( N " dom  M )  /\  y  e.  ( N " dom  M ) ) )  -> 
( x S y  <-> 
( `' ( N  |`  dom  M ) `  x )  _E  ( `' ( N  |`  dom  M ) `  y
) ) )
129122, 125, 127, 128syl12anc 1182 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x S y  <-> 
( `' ( N  |`  dom  M ) `  x )  _E  ( `' ( N  |`  dom  M ) `  y
) ) )
130114, 116, 1293bitr4d 277 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x R y  <-> 
x S y ) )
13143sselda 3308 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  Y )
132131adantrr 698 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  x  e.  Y )
133132, 126jca 519 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x  e.  Y  /\  y  e.  X
) )
134133biantrurd 495 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x S y  <-> 
( ( x  e.  Y  /\  y  e.  X )  /\  x S y ) ) )
135134, 59syl6bbr 255 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x S y  <-> 
x ( S  i^i  ( Y  X.  X
) ) y ) )
136130, 135bitrd 245 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x R y  <-> 
x ( S  i^i  ( Y  X.  X
) ) y ) )
137136ex 424 . . . . . 6  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  X )  ->  (
x R y  <->  x ( S  i^i  ( Y  X.  X ) ) y ) ) )
13856, 109, 137pm5.21ndd 344 . . . . 5  |-  ( ph  ->  ( x R y  <-> 
x ( S  i^i  ( Y  X.  X
) ) y ) )
139 df-br 4173 . . . . 5  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
140 df-br 4173 . . . . 5  |-  ( x ( S  i^i  ( Y  X.  X ) ) y  <->  <. x ,  y
>.  e.  ( S  i^i  ( Y  X.  X
) ) )
141138, 139, 1403bitr3g 279 . . . 4  |-  ( ph  ->  ( <. x ,  y
>.  e.  R  <->  <. x ,  y >.  e.  ( S  i^i  ( Y  X.  X ) ) ) )
142141eqrelrdv2 4934 . . 3  |-  ( ( ( Rel  R  /\  Rel  ( S  i^i  ( Y  X.  X ) ) )  /\  ph )  ->  R  =  ( S  i^i  ( Y  X.  X ) ) )
14353, 142mpancom 651 . 2  |-  ( ph  ->  R  =  ( S  i^i  ( Y  X.  X ) ) )
14443, 143jca 519 1  |-  ( ph  ->  ( X  C_  Y  /\  R  =  ( S  i^i  ( Y  X.  X ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916   [.wsbc 3121    i^i cin 3279    C_ wss 3280   {csn 3774   <.cop 3777   class class class wbr 4172   {copab 4225    _E cep 4452    We wwe 4500   Ord word 4540    X. cxp 4835   `'ccnv 4836   dom cdm 4837   ran crn 4838    |` cres 4839   "cima 4840   Rel wrel 4842   Fun wfun 5407    Fn wfn 5408   -->wf 5409   -onto->wfo 5411   -1-1-onto->wf1o 5412   ` cfv 5413    Isom wiso 5414  (class class class)co 6040  OrdIsocoi 7434
This theorem is referenced by:  fpwwe2lem10  8470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-riota 6508  df-recs 6592  df-oi 7435
  Copyright terms: Public domain W3C validator