MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem5 Structured version   Unicode version

Theorem fpwwe2lem5 8806
Description: Lemma for fpwwe2 8815. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
fpwwe2.2  |-  ( ph  ->  A  e.  _V )
fpwwe2.3  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x F r )  e.  A )
Assertion
Ref Expression
fpwwe2lem5  |-  ( (
ph  /\  ( X  C_  A  /\  R  C_  ( X  X.  X
)  /\  R  We  X ) )  -> 
( X F R )  e.  A )
Distinct variable groups:    y, u, r, x, F    X, r, u, x, y    ph, r, u, x, y    A, r, x    R, r, u, x, y    W, r, u, x, y
Allowed substitution hints:    A( y, u)

Proof of Theorem fpwwe2lem5
StepHypRef Expression
1 fpwwe2.2 . . . . 5  |-  ( ph  ->  A  e.  _V )
21adantr 465 . . . 4  |-  ( (
ph  /\  ( X  C_  A  /\  R  C_  ( X  X.  X
)  /\  R  We  X ) )  ->  A  e.  _V )
3 simpr1 994 . . . 4  |-  ( (
ph  /\  ( X  C_  A  /\  R  C_  ( X  X.  X
)  /\  R  We  X ) )  ->  X  C_  A )
42, 3ssexd 4444 . . 3  |-  ( (
ph  /\  ( X  C_  A  /\  R  C_  ( X  X.  X
)  /\  R  We  X ) )  ->  X  e.  _V )
5 xpexg 6512 . . . . 5  |-  ( ( X  e.  _V  /\  X  e.  _V )  ->  ( X  X.  X
)  e.  _V )
64, 4, 5syl2anc 661 . . . 4  |-  ( (
ph  /\  ( X  C_  A  /\  R  C_  ( X  X.  X
)  /\  R  We  X ) )  -> 
( X  X.  X
)  e.  _V )
7 simpr2 995 . . . 4  |-  ( (
ph  /\  ( X  C_  A  /\  R  C_  ( X  X.  X
)  /\  R  We  X ) )  ->  R  C_  ( X  X.  X ) )
86, 7ssexd 4444 . . 3  |-  ( (
ph  /\  ( X  C_  A  /\  R  C_  ( X  X.  X
)  /\  R  We  X ) )  ->  R  e.  _V )
94, 8jca 532 . 2  |-  ( (
ph  /\  ( X  C_  A  /\  R  C_  ( X  X.  X
)  /\  R  We  X ) )  -> 
( X  e.  _V  /\  R  e.  _V )
)
10 sseq1 3382 . . . . . 6  |-  ( x  =  X  ->  (
x  C_  A  <->  X  C_  A
) )
11 xpeq12 4864 . . . . . . . 8  |-  ( ( x  =  X  /\  x  =  X )  ->  ( x  X.  x
)  =  ( X  X.  X ) )
1211anidms 645 . . . . . . 7  |-  ( x  =  X  ->  (
x  X.  x )  =  ( X  X.  X ) )
1312sseq2d 3389 . . . . . 6  |-  ( x  =  X  ->  (
r  C_  ( x  X.  x )  <->  r  C_  ( X  X.  X
) ) )
14 weeq2 4714 . . . . . 6  |-  ( x  =  X  ->  (
r  We  x  <->  r  We  X ) )
1510, 13, 143anbi123d 1289 . . . . 5  |-  ( x  =  X  ->  (
( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  <->  ( X  C_  A  /\  r  C_  ( X  X.  X )  /\  r  We  X ) ) )
1615anbi2d 703 . . . 4  |-  ( x  =  X  ->  (
( ph  /\  (
x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) )  <->  ( ph  /\  ( X  C_  A  /\  r  C_  ( X  X.  X )  /\  r  We  X )
) ) )
17 oveq1 6103 . . . . 5  |-  ( x  =  X  ->  (
x F r )  =  ( X F r ) )
1817eleq1d 2509 . . . 4  |-  ( x  =  X  ->  (
( x F r )  e.  A  <->  ( X F r )  e.  A ) )
1916, 18imbi12d 320 . . 3  |-  ( x  =  X  ->  (
( ( ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) )  -> 
( x F r )  e.  A )  <-> 
( ( ph  /\  ( X  C_  A  /\  r  C_  ( X  X.  X )  /\  r  We  X ) )  -> 
( X F r )  e.  A ) ) )
20 sseq1 3382 . . . . . 6  |-  ( r  =  R  ->  (
r  C_  ( X  X.  X )  <->  R  C_  ( X  X.  X ) ) )
21 weeq1 4713 . . . . . 6  |-  ( r  =  R  ->  (
r  We  X  <->  R  We  X ) )
2220, 213anbi23d 1292 . . . . 5  |-  ( r  =  R  ->  (
( X  C_  A  /\  r  C_  ( X  X.  X )  /\  r  We  X )  <->  ( X  C_  A  /\  R  C_  ( X  X.  X )  /\  R  We  X ) ) )
2322anbi2d 703 . . . 4  |-  ( r  =  R  ->  (
( ph  /\  ( X  C_  A  /\  r  C_  ( X  X.  X
)  /\  r  We  X ) )  <->  ( ph  /\  ( X  C_  A  /\  R  C_  ( X  X.  X )  /\  R  We  X )
) ) )
24 oveq2 6104 . . . . 5  |-  ( r  =  R  ->  ( X F r )  =  ( X F R ) )
2524eleq1d 2509 . . . 4  |-  ( r  =  R  ->  (
( X F r )  e.  A  <->  ( X F R )  e.  A
) )
2623, 25imbi12d 320 . . 3  |-  ( r  =  R  ->  (
( ( ph  /\  ( X  C_  A  /\  r  C_  ( X  X.  X )  /\  r  We  X ) )  -> 
( X F r )  e.  A )  <-> 
( ( ph  /\  ( X  C_  A  /\  R  C_  ( X  X.  X )  /\  R  We  X ) )  -> 
( X F R )  e.  A ) ) )
27 fpwwe2.3 . . 3  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x F r )  e.  A )
2819, 26, 27vtocl2g 3039 . 2  |-  ( ( X  e.  _V  /\  R  e.  _V )  ->  ( ( ph  /\  ( X  C_  A  /\  R  C_  ( X  X.  X )  /\  R  We  X ) )  -> 
( X F R )  e.  A ) )
299, 28mpcom 36 1  |-  ( (
ph  /\  ( X  C_  A  /\  R  C_  ( X  X.  X
)  /\  R  We  X ) )  -> 
( X F R )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2720   _Vcvv 2977   [.wsbc 3191    i^i cin 3332    C_ wss 3333   {csn 3882   {copab 4354    We wwe 4683    X. cxp 4843   `'ccnv 4844   "cima 4848  (class class class)co 6096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-xp 4851  df-iota 5386  df-fv 5431  df-ov 6099
This theorem is referenced by:  fpwwe2lem13  8814
  Copyright terms: Public domain W3C validator