MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem3 Structured version   Visualization version   Unicode version

Theorem fpwwe2lem3 9076
Description: Lemma for fpwwe2 9086. (Contributed by Mario Carneiro, 19-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
fpwwe2.2  |-  ( ph  ->  A  e.  _V )
fpwwe2lem4.4  |-  ( ph  ->  X W R )
Assertion
Ref Expression
fpwwe2lem3  |-  ( (
ph  /\  B  e.  X )  ->  (
( `' R " { B } ) F ( R  i^i  (
( `' R " { B } )  X.  ( `' R " { B } ) ) ) )  =  B )
Distinct variable groups:    y, u, B    u, r, x, y, F    X, r, u, x, y    ph, r, u, x, y    A, r, x    R, r, u, x, y    W, r, u, x, y
Allowed substitution hints:    A( y, u)    B( x, r)

Proof of Theorem fpwwe2lem3
StepHypRef Expression
1 fpwwe2lem4.4 . . . . 5  |-  ( ph  ->  X W R )
2 fpwwe2.1 . . . . . 6  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
3 fpwwe2.2 . . . . . 6  |-  ( ph  ->  A  e.  _V )
42, 3fpwwe2lem2 9075 . . . . 5  |-  ( ph  ->  ( X W R  <-> 
( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) ) )
51, 4mpbid 215 . . . 4  |-  ( ph  ->  ( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )
65simprrd 775 . . 3  |-  ( ph  ->  A. y  e.  X  [. ( `' R " { y } )  /  u ]. (
u F ( R  i^i  ( u  X.  u ) ) )  =  y )
7 sneq 3969 . . . . . 6  |-  ( y  =  B  ->  { y }  =  { B } )
87imaeq2d 5174 . . . . 5  |-  ( y  =  B  ->  ( `' R " { y } )  =  ( `' R " { B } ) )
9 eqeq2 2482 . . . . 5  |-  ( y  =  B  ->  (
( u F ( R  i^i  ( u  X.  u ) ) )  =  y  <->  ( u F ( R  i^i  ( u  X.  u
) ) )  =  B ) )
108, 9sbceqbid 3262 . . . 4  |-  ( y  =  B  ->  ( [. ( `' R " { y } )  /  u ]. (
u F ( R  i^i  ( u  X.  u ) ) )  =  y  <->  [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  B ) )
1110rspccva 3135 . . 3  |-  ( ( A. y  e.  X  [. ( `' R " { y } )  /  u ]. (
u F ( R  i^i  ( u  X.  u ) ) )  =  y  /\  B  e.  X )  ->  [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  B )
126, 11sylan 479 . 2  |-  ( (
ph  /\  B  e.  X )  ->  [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  B )
13 cnvimass 5194 . . . . 5  |-  ( `' R " { B } )  C_  dom  R
142relopabi 4964 . . . . . . 7  |-  Rel  W
1514brrelex2i 4881 . . . . . 6  |-  ( X W R  ->  R  e.  _V )
16 dmexg 6743 . . . . . 6  |-  ( R  e.  _V  ->  dom  R  e.  _V )
171, 15, 163syl 18 . . . . 5  |-  ( ph  ->  dom  R  e.  _V )
18 ssexg 4542 . . . . 5  |-  ( ( ( `' R " { B } )  C_  dom  R  /\  dom  R  e.  _V )  ->  ( `' R " { B } )  e.  _V )
1913, 17, 18sylancr 676 . . . 4  |-  ( ph  ->  ( `' R " { B } )  e. 
_V )
20 id 22 . . . . . . 7  |-  ( u  =  ( `' R " { B } )  ->  u  =  ( `' R " { B } ) )
2120sqxpeqd 4865 . . . . . . . 8  |-  ( u  =  ( `' R " { B } )  ->  ( u  X.  u )  =  ( ( `' R " { B } )  X.  ( `' R " { B } ) ) )
2221ineq2d 3625 . . . . . . 7  |-  ( u  =  ( `' R " { B } )  ->  ( R  i^i  ( u  X.  u
) )  =  ( R  i^i  ( ( `' R " { B } )  X.  ( `' R " { B } ) ) ) )
2320, 22oveq12d 6326 . . . . . 6  |-  ( u  =  ( `' R " { B } )  ->  ( u F ( R  i^i  (
u  X.  u ) ) )  =  ( ( `' R " { B } ) F ( R  i^i  (
( `' R " { B } )  X.  ( `' R " { B } ) ) ) ) )
2423eqeq1d 2473 . . . . 5  |-  ( u  =  ( `' R " { B } )  ->  ( ( u F ( R  i^i  ( u  X.  u
) ) )  =  B  <->  ( ( `' R " { B } ) F ( R  i^i  ( ( `' R " { B } )  X.  ( `' R " { B } ) ) ) )  =  B ) )
2524sbcieg 3288 . . . 4  |-  ( ( `' R " { B } )  e.  _V  ->  ( [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  B  <->  ( ( `' R " { B } ) F ( R  i^i  ( ( `' R " { B } )  X.  ( `' R " { B } ) ) ) )  =  B ) )
2619, 25syl 17 . . 3  |-  ( ph  ->  ( [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  B  <->  ( ( `' R " { B } ) F ( R  i^i  ( ( `' R " { B } )  X.  ( `' R " { B } ) ) ) )  =  B ) )
2726adantr 472 . 2  |-  ( (
ph  /\  B  e.  X )  ->  ( [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  (
u  X.  u ) ) )  =  B  <-> 
( ( `' R " { B } ) F ( R  i^i  ( ( `' R " { B } )  X.  ( `' R " { B } ) ) ) )  =  B ) )
2812, 27mpbid 215 1  |-  ( (
ph  /\  B  e.  X )  ->  (
( `' R " { B } ) F ( R  i^i  (
( `' R " { B } )  X.  ( `' R " { B } ) ) ) )  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   _Vcvv 3031   [.wsbc 3255    i^i cin 3389    C_ wss 3390   {csn 3959   class class class wbr 4395   {copab 4453    We wwe 4797    X. cxp 4837   `'ccnv 4838   dom cdm 4839   "cima 4842  (class class class)co 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fv 5597  df-ov 6311
This theorem is referenced by:  fpwwe2lem8  9080  fpwwe2lem12  9084  fpwwe2lem13  9085  fpwwe2  9086  canthwelem  9093  pwfseqlem4  9105
  Copyright terms: Public domain W3C validator