MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem2 Structured version   Unicode version

Theorem fpwwe2lem2 9046
Description: Lemma for fpwwe2 9057. (Contributed by Mario Carneiro, 19-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
fpwwe2.2  |-  ( ph  ->  A  e.  _V )
Assertion
Ref Expression
fpwwe2lem2  |-  ( ph  ->  ( X W R  <-> 
( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) ) )
Distinct variable groups:    y, u, r, x, F    X, r, u, x, y    ph, r, u, x, y    A, r, x    R, r, u, x, y    W, r, u, x, y
Allowed substitution hints:    A( y, u)

Proof of Theorem fpwwe2lem2
StepHypRef Expression
1 fpwwe2.1 . . . . 5  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
21relopabi 4970 . . . 4  |-  Rel  W
32a1i 11 . . 3  |-  ( ph  ->  Rel  W )
4 brrelex12 4883 . . 3  |-  ( ( Rel  W  /\  X W R )  ->  ( X  e.  _V  /\  R  e.  _V ) )
53, 4sylan 473 . 2  |-  ( (
ph  /\  X W R )  ->  ( X  e.  _V  /\  R  e.  _V ) )
6 fpwwe2.2 . . . . 5  |-  ( ph  ->  A  e.  _V )
76adantr 466 . . . 4  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )  ->  A  e.  _V )
8 simprll 770 . . . 4  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )  ->  X  C_  A )
97, 8ssexd 4563 . . 3  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )  ->  X  e.  _V )
10 xpexg 6598 . . . . 5  |-  ( ( X  e.  _V  /\  X  e.  _V )  ->  ( X  X.  X
)  e.  _V )
119, 9, 10syl2anc 665 . . . 4  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )  ->  ( X  X.  X )  e. 
_V )
12 simprlr 771 . . . 4  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )  ->  R  C_  ( X  X.  X
) )
1311, 12ssexd 4563 . . 3  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )  ->  R  e.  _V )
149, 13jca 534 . 2  |-  ( (
ph  /\  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )  ->  ( X  e.  _V  /\  R  e.  _V ) )
15 simpl 458 . . . . . 6  |-  ( ( x  =  X  /\  r  =  R )  ->  x  =  X )
1615sseq1d 3488 . . . . 5  |-  ( ( x  =  X  /\  r  =  R )  ->  ( x  C_  A  <->  X 
C_  A ) )
17 simpr 462 . . . . . 6  |-  ( ( x  =  X  /\  r  =  R )  ->  r  =  R )
1815sqxpeqd 4871 . . . . . 6  |-  ( ( x  =  X  /\  r  =  R )  ->  ( x  X.  x
)  =  ( X  X.  X ) )
1917, 18sseq12d 3490 . . . . 5  |-  ( ( x  =  X  /\  r  =  R )  ->  ( r  C_  (
x  X.  x )  <-> 
R  C_  ( X  X.  X ) ) )
2016, 19anbi12d 715 . . . 4  |-  ( ( x  =  X  /\  r  =  R )  ->  ( ( x  C_  A  /\  r  C_  (
x  X.  x ) )  <->  ( X  C_  A  /\  R  C_  ( X  X.  X ) ) ) )
21 weeq2 4834 . . . . . 6  |-  ( x  =  X  ->  (
r  We  x  <->  r  We  X ) )
22 weeq1 4833 . . . . . 6  |-  ( r  =  R  ->  (
r  We  X  <->  R  We  X ) )
2321, 22sylan9bb 704 . . . . 5  |-  ( ( x  =  X  /\  r  =  R )  ->  ( r  We  x  <->  R  We  X ) )
2417cnveqd 5021 . . . . . . . 8  |-  ( ( x  =  X  /\  r  =  R )  ->  `' r  =  `' R )
2524imaeq1d 5178 . . . . . . 7  |-  ( ( x  =  X  /\  r  =  R )  ->  ( `' r " { y } )  =  ( `' R " { y } ) )
2617ineq1d 3660 . . . . . . . . 9  |-  ( ( x  =  X  /\  r  =  R )  ->  ( r  i^i  (
u  X.  u ) )  =  ( R  i^i  ( u  X.  u ) ) )
2726oveq2d 6312 . . . . . . . 8  |-  ( ( x  =  X  /\  r  =  R )  ->  ( u F ( r  i^i  ( u  X.  u ) ) )  =  ( u F ( R  i^i  ( u  X.  u
) ) ) )
2827eqeq1d 2422 . . . . . . 7  |-  ( ( x  =  X  /\  r  =  R )  ->  ( ( u F ( r  i^i  (
u  X.  u ) ) )  =  y  <-> 
( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) )
2925, 28sbceqbid 3303 . . . . . 6  |-  ( ( x  =  X  /\  r  =  R )  ->  ( [. ( `' r " { y } )  /  u ]. ( u F ( r  i^i  ( u  X.  u ) ) )  =  y  <->  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) )
3015, 29raleqbidv 3037 . . . . 5  |-  ( ( x  =  X  /\  r  =  R )  ->  ( A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u F ( r  i^i  ( u  X.  u ) ) )  =  y  <->  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) )
3123, 30anbi12d 715 . . . 4  |-  ( ( x  =  X  /\  r  =  R )  ->  ( ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u F ( r  i^i  ( u  X.  u ) ) )  =  y )  <-> 
( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. (
u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )
3220, 31anbi12d 715 . . 3  |-  ( ( x  =  X  /\  r  =  R )  ->  ( ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  [. ( `' r " {
y } )  /  u ]. ( u F ( r  i^i  (
u  X.  u ) ) )  =  y ) )  <->  ( ( X  C_  A  /\  R  C_  ( X  X.  X
) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) ) )
3332, 1brabga 4726 . 2  |-  ( ( X  e.  _V  /\  R  e.  _V )  ->  ( X W R  <-> 
( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) ) )
345, 14, 33pm5.21nd 908 1  |-  ( ph  ->  ( X W R  <-> 
( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1867   A.wral 2773   _Vcvv 3078   [.wsbc 3296    i^i cin 3432    C_ wss 3433   {csn 3993   class class class wbr 4417   {copab 4474    We wwe 4803    X. cxp 4843   `'ccnv 4844   "cima 4848   Rel wrel 4850  (class class class)co 6296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fv 5600  df-ov 6299
This theorem is referenced by:  fpwwe2lem3  9047  fpwwe2lem6  9049  fpwwe2lem7  9050  fpwwe2lem9  9052  fpwwe2lem11  9054  fpwwe2lem12  9055  fpwwe2lem13  9056  fpwwe2  9057  canthwelem  9064  pwfseqlem4  9076
  Copyright terms: Public domain W3C validator