Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpwrelmapffslem Structured version   Unicode version

Theorem fpwrelmapffslem 27213
Description: Lemma for fpwrelmapffs 27215. For this theorem, the sets  A and  B could be infinite, but the relation  R itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fpwrelmapffslem.1  |-  A  e. 
_V
fpwrelmapffslem.2  |-  B  e. 
_V
fpwrelmapffslem.3  |-  ( ph  ->  F : A --> ~P B
)
fpwrelmapffslem.4  |-  ( ph  ->  R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) } )
Assertion
Ref Expression
fpwrelmapffslem  |-  ( ph  ->  ( R  e.  Fin  <->  ( ran  F  C_  Fin  /\  ( F supp 
(/) )  e.  Fin ) ) )
Distinct variable groups:    x, y, A    x, F, y    x, R, y
Allowed substitution hints:    ph( x, y)    B( x, y)

Proof of Theorem fpwrelmapffslem
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwrelmapffslem.4 . . . 4  |-  ( ph  ->  R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) } )
2 relopab 5120 . . . . 5  |-  Rel  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }
3 releq 5076 . . . . 5  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  ->  ( Rel  R  <->  Rel 
{ <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) } ) )
42, 3mpbiri 233 . . . 4  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  ->  Rel  R )
51, 4syl 16 . . 3  |-  ( ph  ->  Rel  R )
6 relfi 27118 . . 3  |-  ( Rel 
R  ->  ( R  e.  Fin  <->  ( dom  R  e.  Fin  /\  ran  R  e.  Fin ) ) )
75, 6syl 16 . 2  |-  ( ph  ->  ( R  e.  Fin  <->  ( dom  R  e.  Fin  /\  ran  R  e.  Fin )
) )
8 rexcom4 3126 . . . . . . . . . . . . 13  |-  ( E. x  e.  A  E. z ( w  e.  z  /\  z  =  ( F `  x
) )  <->  E. z E. x  e.  A  ( w  e.  z  /\  z  =  ( F `  x )
) )
9 ancom 450 . . . . . . . . . . . . . . . 16  |-  ( ( z  =  ( F `
 x )  /\  w  e.  z )  <->  ( w  e.  z  /\  z  =  ( F `  x ) ) )
109exbii 1639 . . . . . . . . . . . . . . 15  |-  ( E. z ( z  =  ( F `  x
)  /\  w  e.  z )  <->  E. z
( w  e.  z  /\  z  =  ( F `  x ) ) )
11 nfv 1678 . . . . . . . . . . . . . . . 16  |-  F/ z  w  e.  ( F `
 x )
12 fvex 5867 . . . . . . . . . . . . . . . 16  |-  ( F `
 x )  e. 
_V
13 eleq2 2533 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( F `  x )  ->  (
w  e.  z  <->  w  e.  ( F `  x ) ) )
1411, 12, 13ceqsex 3142 . . . . . . . . . . . . . . 15  |-  ( E. z ( z  =  ( F `  x
)  /\  w  e.  z )  <->  w  e.  ( F `  x ) )
1510, 14bitr3i 251 . . . . . . . . . . . . . 14  |-  ( E. z ( w  e.  z  /\  z  =  ( F `  x
) )  <->  w  e.  ( F `  x ) )
1615rexbii 2958 . . . . . . . . . . . . 13  |-  ( E. x  e.  A  E. z ( w  e.  z  /\  z  =  ( F `  x
) )  <->  E. x  e.  A  w  e.  ( F `  x ) )
17 r19.42v 3009 . . . . . . . . . . . . . 14  |-  ( E. x  e.  A  ( w  e.  z  /\  z  =  ( F `  x ) )  <->  ( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) )
1817exbii 1639 . . . . . . . . . . . . 13  |-  ( E. z E. x  e.  A  ( w  e.  z  /\  z  =  ( F `  x
) )  <->  E. z
( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) )
198, 16, 183bitr3ri 276 . . . . . . . . . . . 12  |-  ( E. z ( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) )  <->  E. x  e.  A  w  e.  ( F `  x ) )
20 df-rex 2813 . . . . . . . . . . . 12  |-  ( E. x  e.  A  w  e.  ( F `  x )  <->  E. x
( x  e.  A  /\  w  e.  ( F `  x )
) )
2119, 20bitr2i 250 . . . . . . . . . . 11  |-  ( E. x ( x  e.  A  /\  w  e.  ( F `  x
) )  <->  E. z
( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) )
2221a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( E. x ( x  e.  A  /\  w  e.  ( F `  x ) )  <->  E. z
( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) ) )
23 vex 3109 . . . . . . . . . . 11  |-  w  e. 
_V
24 nfv 1678 . . . . . . . . . . . 12  |-  F/ x  y  =  w
25 biidd 237 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
x  e.  A  <->  x  e.  A ) )
26 eleq1 2532 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
y  e.  ( F `
 x )  <->  w  e.  ( F `  x ) ) )
2725, 26anbi12d 710 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
( x  e.  A  /\  y  e.  ( F `  x )
)  <->  ( x  e.  A  /\  w  e.  ( F `  x
) ) ) )
2824, 27exbid 1829 . . . . . . . . . . 11  |-  ( y  =  w  ->  ( E. x ( x  e.  A  /\  y  e.  ( F `  x
) )  <->  E. x
( x  e.  A  /\  w  e.  ( F `  x )
) ) )
2923, 28elab 3243 . . . . . . . . . 10  |-  ( w  e.  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  <->  E. x
( x  e.  A  /\  w  e.  ( F `  x )
) )
30 eluniab 4249 . . . . . . . . . 10  |-  ( w  e.  U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  <->  E. z ( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) )
3122, 29, 303bitr4g 288 . . . . . . . . 9  |-  ( ph  ->  ( w  e.  {
y  |  E. x
( x  e.  A  /\  y  e.  ( F `  x )
) }  <->  w  e.  U. { z  |  E. x  e.  A  z  =  ( F `  x ) } ) )
3231eqrdv 2457 . . . . . . . 8  |-  ( ph  ->  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  =  U. { z  |  E. x  e.  A  z  =  ( F `  x ) } )
3332eleq1d 2529 . . . . . . 7  |-  ( ph  ->  ( { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin 
<-> 
U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
3433adantr 465 . . . . . 6  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin 
<-> 
U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
35 fpwrelmapffslem.3 . . . . . . . . . . 11  |-  ( ph  ->  F : A --> ~P B
)
36 ffn 5722 . . . . . . . . . . 11  |-  ( F : A --> ~P B  ->  F  Fn  A )
37 fnrnfv 5905 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  ran  F  =  { z  |  E. x  e.  A  z  =  ( F `  x ) } )
3835, 36, 373syl 20 . . . . . . . . . 10  |-  ( ph  ->  ran  F  =  {
z  |  E. x  e.  A  z  =  ( F `  x ) } )
3938adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ran  F  =  { z  |  E. x  e.  A  z  =  ( F `  x ) } )
40 0ex 4570 . . . . . . . . . . 11  |-  (/)  e.  _V
4140a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  (/)  e.  _V )
42 fpwrelmapffslem.1 . . . . . . . . . . . 12  |-  A  e. 
_V
43 fex 6124 . . . . . . . . . . . 12  |-  ( ( F : A --> ~P B  /\  A  e.  _V )  ->  F  e.  _V )
4435, 42, 43sylancl 662 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  _V )
4544adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  F  e.  _V )
46 ffun 5724 . . . . . . . . . . . 12  |-  ( F : A --> ~P B  ->  Fun  F )
4735, 46syl 16 . . . . . . . . . . 11  |-  ( ph  ->  Fun  F )
4847adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  Fun  F )
49 opabdm 27123 . . . . . . . . . . . . . 14  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  ->  dom  R  =  { x  |  E. y ( x  e.  A  /\  y  e.  ( F `  x
) ) } )
501, 49syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  R  =  {
x  |  E. y
( x  e.  A  /\  y  e.  ( F `  x )
) } )
5142, 43mpan2 671 . . . . . . . . . . . . . . . . 17  |-  ( F : A --> ~P B  ->  F  e.  _V )
52 suppimacnv 6902 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  _V  /\  (/) 
e.  _V )  ->  ( F supp 
(/) )  =  ( `' F " ( _V 
\  { (/) } ) ) )
5340, 52mpan2 671 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  _V  ->  ( F supp 
(/) )  =  ( `' F " ( _V 
\  { (/) } ) ) )
5435, 51, 533syl 20 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F supp  (/) )  =  ( `' F "
( _V  \  { (/)
} ) ) )
5535feqmptd 5911 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
5655cnveqd 5169 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  `' F  =  `' ( x  e.  A  |->  ( F `  x
) ) )
5756imaeq1d 5327 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( `' F "
( _V  \  { (/)
} ) )  =  ( `' ( x  e.  A  |->  ( F `
 x ) )
" ( _V  \  { (/) } ) ) )
5854, 57eqtrd 2501 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F supp  (/) )  =  ( `' ( x  e.  A  |->  ( F `
 x ) )
" ( _V  \  { (/) } ) ) )
59 eqid 2460 . . . . . . . . . . . . . . . 16  |-  ( x  e.  A  |->  ( F `
 x ) )  =  ( x  e.  A  |->  ( F `  x ) )
6059mptpreima 5491 . . . . . . . . . . . . . . 15  |-  ( `' ( x  e.  A  |->  ( F `  x
) ) " ( _V  \  { (/) } ) )  =  { x  e.  A  |  ( F `  x )  e.  ( _V  \  { (/)
} ) }
6158, 60syl6eq 2517 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F supp  (/) )  =  { x  e.  A  |  ( F `  x )  e.  ( _V  \  { (/) } ) } )
62 suppvalfn 6898 . . . . . . . . . . . . . . . . 17  |-  ( ( F  Fn  A  /\  A  e.  _V  /\  (/)  e.  _V )  ->  ( F supp  (/) )  =  { x  e.  A  |  ( F `  x )  =/=  (/) } )
6342, 40, 62mp3an23 1311 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  A  ->  ( F supp 
(/) )  =  {
x  e.  A  | 
( F `  x
)  =/=  (/) } )
6435, 36, 633syl 20 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F supp  (/) )  =  { x  e.  A  |  ( F `  x )  =/=  (/) } )
65 n0 3787 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x )  =/=  (/)  <->  E. y  y  e.  ( F `  x
) )
6665a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  A  ->  (
( F `  x
)  =/=  (/)  <->  E. y 
y  e.  ( F `
 x ) ) )
6766rabbiia 3095 . . . . . . . . . . . . . . . 16  |-  { x  e.  A  |  ( F `  x )  =/=  (/) }  =  {
x  e.  A  |  E. y  y  e.  ( F `  x ) }
6867a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  { x  e.  A  |  ( F `  x )  =/=  (/) }  =  { x  e.  A  |  E. y  y  e.  ( F `  x
) } )
6964, 61, 683eqtr3d 2509 . . . . . . . . . . . . . 14  |-  ( ph  ->  { x  e.  A  |  ( F `  x )  e.  ( _V  \  { (/) } ) }  =  {
x  e.  A  |  E. y  y  e.  ( F `  x ) } )
70 df-rab 2816 . . . . . . . . . . . . . . . 16  |-  { x  e.  A  |  E. y  y  e.  ( F `  x ) }  =  { x  |  ( x  e.  A  /\  E. y 
y  e.  ( F `
 x ) ) }
71 19.42v 1942 . . . . . . . . . . . . . . . . 17  |-  ( E. y ( x  e.  A  /\  y  e.  ( F `  x
) )  <->  ( x  e.  A  /\  E. y 
y  e.  ( F `
 x ) ) )
7271abbii 2594 . . . . . . . . . . . . . . . 16  |-  { x  |  E. y ( x  e.  A  /\  y  e.  ( F `  x
) ) }  =  { x  |  (
x  e.  A  /\  E. y  y  e.  ( F `  x ) ) }
7370, 72eqtr4i 2492 . . . . . . . . . . . . . . 15  |-  { x  e.  A  |  E. y  y  e.  ( F `  x ) }  =  { x  |  E. y ( x  e.  A  /\  y  e.  ( F `  x
) ) }
7473a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  { x  e.  A  |  E. y  y  e.  ( F `  x
) }  =  {
x  |  E. y
( x  e.  A  /\  y  e.  ( F `  x )
) } )
7561, 69, 743eqtrd 2505 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F supp  (/) )  =  { x  |  E. y ( x  e.  A  /\  y  e.  ( F `  x
) ) } )
7650, 75eqtr4d 2504 . . . . . . . . . . . 12  |-  ( ph  ->  dom  R  =  ( F supp  (/) ) )
7776eleq1d 2529 . . . . . . . . . . 11  |-  ( ph  ->  ( dom  R  e. 
Fin 
<->  ( F supp  (/) )  e. 
Fin ) )
7877biimpa 484 . . . . . . . . . 10  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( F supp 
(/) )  e.  Fin )
7941, 45, 48, 78ffsrn 27210 . . . . . . . . 9  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ran  F  e.  Fin )
8039, 79eqeltrrd 2549 . . . . . . . 8  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin )
81 unifi 7798 . . . . . . . . 9  |-  ( ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin  /\  { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin )  ->  U. {
z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin )
8281ex 434 . . . . . . . 8  |-  ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin  ->  ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin  ->  U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
8380, 82syl 16 . . . . . . 7  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin  ->  U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
84 unifi3 27186 . . . . . . . 8  |-  ( U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin  ->  { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin )
8584a1i 11 . . . . . . 7  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin  ->  { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin ) )
8683, 85impbid 191 . . . . . 6  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin 
<-> 
U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
8734, 86bitr4d 256 . . . . 5  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin 
<->  { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin ) )
88 opabrn 27124 . . . . . . . 8  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  ->  ran  R  =  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) } )
891, 88syl 16 . . . . . . 7  |-  ( ph  ->  ran  R  =  {
y  |  E. x
( x  e.  A  /\  y  e.  ( F `  x )
) } )
9089eleq1d 2529 . . . . . 6  |-  ( ph  ->  ( ran  R  e. 
Fin 
<->  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin ) )
9190adantr 465 . . . . 5  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( ran  R  e.  Fin  <->  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin ) )
9239sseq1d 3524 . . . . 5  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( ran  F  C_  Fin  <->  { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin ) )
9387, 91, 923bitr4d 285 . . . 4  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( ran  R  e.  Fin  <->  ran  F  C_  Fin ) )
9493pm5.32da 641 . . 3  |-  ( ph  ->  ( ( dom  R  e.  Fin  /\  ran  R  e.  Fin )  <->  ( dom  R  e.  Fin  /\  ran  F 
C_  Fin ) ) )
9577anbi1d 704 . . 3  |-  ( ph  ->  ( ( dom  R  e.  Fin  /\  ran  F  C_ 
Fin )  <->  ( ( F supp 
(/) )  e.  Fin  /\ 
ran  F  C_  Fin )
) )
9694, 95bitrd 253 . 2  |-  ( ph  ->  ( ( dom  R  e.  Fin  /\  ran  R  e.  Fin )  <->  ( ( F supp 
(/) )  e.  Fin  /\ 
ran  F  C_  Fin )
) )
97 ancom 450 . . 3  |-  ( ( ( F supp  (/) )  e. 
Fin  /\  ran  F  C_  Fin )  <->  ( ran  F  C_ 
Fin  /\  ( F supp  (/) )  e.  Fin )
)
9897a1i 11 . 2  |-  ( ph  ->  ( ( ( F supp  (/) )  e.  Fin  /\ 
ran  F  C_  Fin )  <->  ( ran  F  C_  Fin  /\  ( F supp  (/) )  e. 
Fin ) ) )
997, 96, 983bitrd 279 1  |-  ( ph  ->  ( R  e.  Fin  <->  ( ran  F  C_  Fin  /\  ( F supp 
(/) )  e.  Fin ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762   {cab 2445    =/= wne 2655   E.wrex 2808   {crab 2811   _Vcvv 3106    \ cdif 3466    C_ wss 3469   (/)c0 3778   ~Pcpw 4003   {csn 4020   U.cuni 4238   {copab 4497    |-> cmpt 4498   `'ccnv 4991   dom cdm 4992   ran crn 4993   "cima 4995   Rel wrel 4997   Fun wfun 5573    Fn wfn 5574   -->wf 5575   ` cfv 5579  (class class class)co 6275   supp csupp 6891   Fincfn 7506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-ac2 8832
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-fin 7510  df-card 8309  df-acn 8312  df-ac 8486
This theorem is referenced by:  fpwrelmapffs  27215
  Copyright terms: Public domain W3C validator