Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpwrelmapffslem Structured version   Visualization version   Unicode version

Theorem fpwrelmapffslem 28392
Description: Lemma for fpwrelmapffs 28394. For this theorem, the sets  A and  B could be infinite, but the relation  R itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fpwrelmapffslem.1  |-  A  e. 
_V
fpwrelmapffslem.2  |-  B  e. 
_V
fpwrelmapffslem.3  |-  ( ph  ->  F : A --> ~P B
)
fpwrelmapffslem.4  |-  ( ph  ->  R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) } )
Assertion
Ref Expression
fpwrelmapffslem  |-  ( ph  ->  ( R  e.  Fin  <->  ( ran  F  C_  Fin  /\  ( F supp 
(/) )  e.  Fin ) ) )
Distinct variable groups:    x, y, A    x, F, y    x, R, y
Allowed substitution hints:    ph( x, y)    B( x, y)

Proof of Theorem fpwrelmapffslem
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwrelmapffslem.4 . . 3  |-  ( ph  ->  R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) } )
2 relopab 4965 . . . 4  |-  Rel  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }
3 releq 4922 . . . 4  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  ->  ( Rel  R  <->  Rel 
{ <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) } ) )
42, 3mpbiri 241 . . 3  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  ->  Rel  R )
5 relfi 28289 . . 3  |-  ( Rel 
R  ->  ( R  e.  Fin  <->  ( dom  R  e.  Fin  /\  ran  R  e.  Fin ) ) )
61, 4, 53syl 18 . 2  |-  ( ph  ->  ( R  e.  Fin  <->  ( dom  R  e.  Fin  /\  ran  R  e.  Fin )
) )
7 rexcom4 3053 . . . . . . . . . . . . 13  |-  ( E. x  e.  A  E. z ( w  e.  z  /\  z  =  ( F `  x
) )  <->  E. z E. x  e.  A  ( w  e.  z  /\  z  =  ( F `  x )
) )
8 ancom 457 . . . . . . . . . . . . . . . 16  |-  ( ( z  =  ( F `
 x )  /\  w  e.  z )  <->  ( w  e.  z  /\  z  =  ( F `  x ) ) )
98exbii 1726 . . . . . . . . . . . . . . 15  |-  ( E. z ( z  =  ( F `  x
)  /\  w  e.  z )  <->  E. z
( w  e.  z  /\  z  =  ( F `  x ) ) )
10 fvex 5889 . . . . . . . . . . . . . . . 16  |-  ( F `
 x )  e. 
_V
11 eleq2 2538 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( F `  x )  ->  (
w  e.  z  <->  w  e.  ( F `  x ) ) )
1210, 11ceqsexv 3070 . . . . . . . . . . . . . . 15  |-  ( E. z ( z  =  ( F `  x
)  /\  w  e.  z )  <->  w  e.  ( F `  x ) )
139, 12bitr3i 259 . . . . . . . . . . . . . 14  |-  ( E. z ( w  e.  z  /\  z  =  ( F `  x
) )  <->  w  e.  ( F `  x ) )
1413rexbii 2881 . . . . . . . . . . . . 13  |-  ( E. x  e.  A  E. z ( w  e.  z  /\  z  =  ( F `  x
) )  <->  E. x  e.  A  w  e.  ( F `  x ) )
15 r19.42v 2931 . . . . . . . . . . . . . 14  |-  ( E. x  e.  A  ( w  e.  z  /\  z  =  ( F `  x ) )  <->  ( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) )
1615exbii 1726 . . . . . . . . . . . . 13  |-  ( E. z E. x  e.  A  ( w  e.  z  /\  z  =  ( F `  x
) )  <->  E. z
( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) )
177, 14, 163bitr3ri 284 . . . . . . . . . . . 12  |-  ( E. z ( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) )  <->  E. x  e.  A  w  e.  ( F `  x ) )
18 df-rex 2762 . . . . . . . . . . . 12  |-  ( E. x  e.  A  w  e.  ( F `  x )  <->  E. x
( x  e.  A  /\  w  e.  ( F `  x )
) )
1917, 18bitr2i 258 . . . . . . . . . . 11  |-  ( E. x ( x  e.  A  /\  w  e.  ( F `  x
) )  <->  E. z
( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) )
2019a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( E. x ( x  e.  A  /\  w  e.  ( F `  x ) )  <->  E. z
( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) ) )
21 vex 3034 . . . . . . . . . . 11  |-  w  e. 
_V
22 eleq1 2537 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
y  e.  ( F `
 x )  <->  w  e.  ( F `  x ) ) )
2322anbi2d 718 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
( x  e.  A  /\  y  e.  ( F `  x )
)  <->  ( x  e.  A  /\  w  e.  ( F `  x
) ) ) )
2423exbidv 1776 . . . . . . . . . . 11  |-  ( y  =  w  ->  ( E. x ( x  e.  A  /\  y  e.  ( F `  x
) )  <->  E. x
( x  e.  A  /\  w  e.  ( F `  x )
) ) )
2521, 24elab 3173 . . . . . . . . . 10  |-  ( w  e.  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  <->  E. x
( x  e.  A  /\  w  e.  ( F `  x )
) )
26 eluniab 4201 . . . . . . . . . 10  |-  ( w  e.  U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  <->  E. z ( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) )
2720, 25, 263bitr4g 296 . . . . . . . . 9  |-  ( ph  ->  ( w  e.  {
y  |  E. x
( x  e.  A  /\  y  e.  ( F `  x )
) }  <->  w  e.  U. { z  |  E. x  e.  A  z  =  ( F `  x ) } ) )
2827eqrdv 2469 . . . . . . . 8  |-  ( ph  ->  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  =  U. { z  |  E. x  e.  A  z  =  ( F `  x ) } )
2928eleq1d 2533 . . . . . . 7  |-  ( ph  ->  ( { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin 
<-> 
U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
3029adantr 472 . . . . . 6  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin 
<-> 
U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
31 fpwrelmapffslem.3 . . . . . . . . . . 11  |-  ( ph  ->  F : A --> ~P B
)
32 ffn 5739 . . . . . . . . . . 11  |-  ( F : A --> ~P B  ->  F  Fn  A )
33 fnrnfv 5925 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  ran  F  =  { z  |  E. x  e.  A  z  =  ( F `  x ) } )
3431, 32, 333syl 18 . . . . . . . . . 10  |-  ( ph  ->  ran  F  =  {
z  |  E. x  e.  A  z  =  ( F `  x ) } )
3534adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ran  F  =  { z  |  E. x  e.  A  z  =  ( F `  x ) } )
36 0ex 4528 . . . . . . . . . . 11  |-  (/)  e.  _V
3736a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  (/)  e.  _V )
38 fpwrelmapffslem.1 . . . . . . . . . . . 12  |-  A  e. 
_V
39 fex 6155 . . . . . . . . . . . 12  |-  ( ( F : A --> ~P B  /\  A  e.  _V )  ->  F  e.  _V )
4031, 38, 39sylancl 675 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  _V )
4140adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  F  e.  _V )
42 ffun 5742 . . . . . . . . . . . 12  |-  ( F : A --> ~P B  ->  Fun  F )
4331, 42syl 17 . . . . . . . . . . 11  |-  ( ph  ->  Fun  F )
4443adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  Fun  F )
45 opabdm 28295 . . . . . . . . . . . . . 14  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  ->  dom  R  =  { x  |  E. y ( x  e.  A  /\  y  e.  ( F `  x
) ) } )
461, 45syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  R  =  {
x  |  E. y
( x  e.  A  /\  y  e.  ( F `  x )
) } )
4738, 39mpan2 685 . . . . . . . . . . . . . . . . 17  |-  ( F : A --> ~P B  ->  F  e.  _V )
48 suppimacnv 6944 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  _V  /\  (/) 
e.  _V )  ->  ( F supp 
(/) )  =  ( `' F " ( _V 
\  { (/) } ) ) )
4936, 48mpan2 685 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  _V  ->  ( F supp 
(/) )  =  ( `' F " ( _V 
\  { (/) } ) ) )
5031, 47, 493syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F supp  (/) )  =  ( `' F "
( _V  \  { (/)
} ) ) )
5131feqmptd 5932 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
5251cnveqd 5015 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  `' F  =  `' ( x  e.  A  |->  ( F `  x
) ) )
5352imaeq1d 5173 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( `' F "
( _V  \  { (/)
} ) )  =  ( `' ( x  e.  A  |->  ( F `
 x ) )
" ( _V  \  { (/) } ) ) )
5450, 53eqtrd 2505 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F supp  (/) )  =  ( `' ( x  e.  A  |->  ( F `
 x ) )
" ( _V  \  { (/) } ) ) )
55 eqid 2471 . . . . . . . . . . . . . . . 16  |-  ( x  e.  A  |->  ( F `
 x ) )  =  ( x  e.  A  |->  ( F `  x ) )
5655mptpreima 5335 . . . . . . . . . . . . . . 15  |-  ( `' ( x  e.  A  |->  ( F `  x
) ) " ( _V  \  { (/) } ) )  =  { x  e.  A  |  ( F `  x )  e.  ( _V  \  { (/)
} ) }
5754, 56syl6eq 2521 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F supp  (/) )  =  { x  e.  A  |  ( F `  x )  e.  ( _V  \  { (/) } ) } )
58 suppvalfn 6940 . . . . . . . . . . . . . . . . 17  |-  ( ( F  Fn  A  /\  A  e.  _V  /\  (/)  e.  _V )  ->  ( F supp  (/) )  =  { x  e.  A  |  ( F `  x )  =/=  (/) } )
5938, 36, 58mp3an23 1382 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  A  ->  ( F supp 
(/) )  =  {
x  e.  A  | 
( F `  x
)  =/=  (/) } )
6031, 32, 593syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F supp  (/) )  =  { x  e.  A  |  ( F `  x )  =/=  (/) } )
61 n0 3732 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x )  =/=  (/)  <->  E. y  y  e.  ( F `  x
) )
6261a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  A  ->  (
( F `  x
)  =/=  (/)  <->  E. y 
y  e.  ( F `
 x ) ) )
6362rabbiia 3019 . . . . . . . . . . . . . . . 16  |-  { x  e.  A  |  ( F `  x )  =/=  (/) }  =  {
x  e.  A  |  E. y  y  e.  ( F `  x ) }
6463a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  { x  e.  A  |  ( F `  x )  =/=  (/) }  =  { x  e.  A  |  E. y  y  e.  ( F `  x
) } )
6560, 57, 643eqtr3d 2513 . . . . . . . . . . . . . 14  |-  ( ph  ->  { x  e.  A  |  ( F `  x )  e.  ( _V  \  { (/) } ) }  =  {
x  e.  A  |  E. y  y  e.  ( F `  x ) } )
66 df-rab 2765 . . . . . . . . . . . . . . . 16  |-  { x  e.  A  |  E. y  y  e.  ( F `  x ) }  =  { x  |  ( x  e.  A  /\  E. y 
y  e.  ( F `
 x ) ) }
67 19.42v 1842 . . . . . . . . . . . . . . . . 17  |-  ( E. y ( x  e.  A  /\  y  e.  ( F `  x
) )  <->  ( x  e.  A  /\  E. y 
y  e.  ( F `
 x ) ) )
6867abbii 2587 . . . . . . . . . . . . . . . 16  |-  { x  |  E. y ( x  e.  A  /\  y  e.  ( F `  x
) ) }  =  { x  |  (
x  e.  A  /\  E. y  y  e.  ( F `  x ) ) }
6966, 68eqtr4i 2496 . . . . . . . . . . . . . . 15  |-  { x  e.  A  |  E. y  y  e.  ( F `  x ) }  =  { x  |  E. y ( x  e.  A  /\  y  e.  ( F `  x
) ) }
7069a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  { x  e.  A  |  E. y  y  e.  ( F `  x
) }  =  {
x  |  E. y
( x  e.  A  /\  y  e.  ( F `  x )
) } )
7157, 65, 703eqtrd 2509 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F supp  (/) )  =  { x  |  E. y ( x  e.  A  /\  y  e.  ( F `  x
) ) } )
7246, 71eqtr4d 2508 . . . . . . . . . . . 12  |-  ( ph  ->  dom  R  =  ( F supp  (/) ) )
7372eleq1d 2533 . . . . . . . . . . 11  |-  ( ph  ->  ( dom  R  e. 
Fin 
<->  ( F supp  (/) )  e. 
Fin ) )
7473biimpa 492 . . . . . . . . . 10  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( F supp 
(/) )  e.  Fin )
7537, 41, 44, 74ffsrn 28389 . . . . . . . . 9  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ran  F  e.  Fin )
7635, 75eqeltrrd 2550 . . . . . . . 8  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin )
77 unifi 7881 . . . . . . . . 9  |-  ( ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin  /\  { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin )  ->  U. {
z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin )
7877ex 441 . . . . . . . 8  |-  ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin  ->  ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin  ->  U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
7976, 78syl 17 . . . . . . 7  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin  ->  U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
80 unifi3 28368 . . . . . . 7  |-  ( U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin  ->  { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin )
8179, 80impbid1 208 . . . . . 6  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin 
<-> 
U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
8230, 81bitr4d 264 . . . . 5  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin 
<->  { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin ) )
83 opabrn 28296 . . . . . . . 8  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  ->  ran  R  =  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) } )
841, 83syl 17 . . . . . . 7  |-  ( ph  ->  ran  R  =  {
y  |  E. x
( x  e.  A  /\  y  e.  ( F `  x )
) } )
8584eleq1d 2533 . . . . . 6  |-  ( ph  ->  ( ran  R  e. 
Fin 
<->  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin ) )
8685adantr 472 . . . . 5  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( ran  R  e.  Fin  <->  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin ) )
8735sseq1d 3445 . . . . 5  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( ran  F  C_  Fin  <->  { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin ) )
8882, 86, 873bitr4d 293 . . . 4  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( ran  R  e.  Fin  <->  ran  F  C_  Fin ) )
8988pm5.32da 653 . . 3  |-  ( ph  ->  ( ( dom  R  e.  Fin  /\  ran  R  e.  Fin )  <->  ( dom  R  e.  Fin  /\  ran  F 
C_  Fin ) ) )
9073anbi1d 719 . . 3  |-  ( ph  ->  ( ( dom  R  e.  Fin  /\  ran  F  C_ 
Fin )  <->  ( ( F supp 
(/) )  e.  Fin  /\ 
ran  F  C_  Fin )
) )
9189, 90bitrd 261 . 2  |-  ( ph  ->  ( ( dom  R  e.  Fin  /\  ran  R  e.  Fin )  <->  ( ( F supp 
(/) )  e.  Fin  /\ 
ran  F  C_  Fin )
) )
92 ancom 457 . . 3  |-  ( ( ( F supp  (/) )  e. 
Fin  /\  ran  F  C_  Fin )  <->  ( ran  F  C_ 
Fin  /\  ( F supp  (/) )  e.  Fin )
)
9392a1i 11 . 2  |-  ( ph  ->  ( ( ( F supp  (/) )  e.  Fin  /\ 
ran  F  C_  Fin )  <->  ( ran  F  C_  Fin  /\  ( F supp  (/) )  e. 
Fin ) ) )
946, 91, 933bitrd 287 1  |-  ( ph  ->  ( R  e.  Fin  <->  ( ran  F  C_  Fin  /\  ( F supp 
(/) )  e.  Fin ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   {cab 2457    =/= wne 2641   E.wrex 2757   {crab 2760   _Vcvv 3031    \ cdif 3387    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   {csn 3959   U.cuni 4190   {copab 4453    |-> cmpt 4454   `'ccnv 4838   dom cdm 4839   ran crn 4840   "cima 4842   Rel wrel 4844   Fun wfun 5583    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308   supp csupp 6933   Fincfn 7587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-ac2 8911
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-fin 7591  df-card 8391  df-acn 8394  df-ac 8565
This theorem is referenced by:  fpwrelmapffs  28394
  Copyright terms: Public domain W3C validator