Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpwrelmapffslem Structured version   Unicode version

Theorem fpwrelmapffslem 28323
Description: Lemma for fpwrelmapffs 28325. For this theorem, the sets  A and  B could be infinite, but the relation  R itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fpwrelmapffslem.1  |-  A  e. 
_V
fpwrelmapffslem.2  |-  B  e. 
_V
fpwrelmapffslem.3  |-  ( ph  ->  F : A --> ~P B
)
fpwrelmapffslem.4  |-  ( ph  ->  R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) } )
Assertion
Ref Expression
fpwrelmapffslem  |-  ( ph  ->  ( R  e.  Fin  <->  ( ran  F  C_  Fin  /\  ( F supp 
(/) )  e.  Fin ) ) )
Distinct variable groups:    x, y, A    x, F, y    x, R, y
Allowed substitution hints:    ph( x, y)    B( x, y)

Proof of Theorem fpwrelmapffslem
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwrelmapffslem.4 . . 3  |-  ( ph  ->  R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) } )
2 relopab 4979 . . . 4  |-  Rel  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }
3 releq 4936 . . . 4  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  ->  ( Rel  R  <->  Rel 
{ <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) } ) )
42, 3mpbiri 236 . . 3  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  ->  Rel  R )
5 relfi 28215 . . 3  |-  ( Rel 
R  ->  ( R  e.  Fin  <->  ( dom  R  e.  Fin  /\  ran  R  e.  Fin ) ) )
61, 4, 53syl 18 . 2  |-  ( ph  ->  ( R  e.  Fin  <->  ( dom  R  e.  Fin  /\  ran  R  e.  Fin )
) )
7 rexcom4 3101 . . . . . . . . . . . . 13  |-  ( E. x  e.  A  E. z ( w  e.  z  /\  z  =  ( F `  x
) )  <->  E. z E. x  e.  A  ( w  e.  z  /\  z  =  ( F `  x )
) )
8 ancom 451 . . . . . . . . . . . . . . . 16  |-  ( ( z  =  ( F `
 x )  /\  w  e.  z )  <->  ( w  e.  z  /\  z  =  ( F `  x ) ) )
98exbii 1712 . . . . . . . . . . . . . . 15  |-  ( E. z ( z  =  ( F `  x
)  /\  w  e.  z )  <->  E. z
( w  e.  z  /\  z  =  ( F `  x ) ) )
10 fvex 5891 . . . . . . . . . . . . . . . 16  |-  ( F `
 x )  e. 
_V
11 eleq2 2496 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( F `  x )  ->  (
w  e.  z  <->  w  e.  ( F `  x ) ) )
1210, 11ceqsexv 3118 . . . . . . . . . . . . . . 15  |-  ( E. z ( z  =  ( F `  x
)  /\  w  e.  z )  <->  w  e.  ( F `  x ) )
139, 12bitr3i 254 . . . . . . . . . . . . . 14  |-  ( E. z ( w  e.  z  /\  z  =  ( F `  x
) )  <->  w  e.  ( F `  x ) )
1413rexbii 2924 . . . . . . . . . . . . 13  |-  ( E. x  e.  A  E. z ( w  e.  z  /\  z  =  ( F `  x
) )  <->  E. x  e.  A  w  e.  ( F `  x ) )
15 r19.42v 2980 . . . . . . . . . . . . . 14  |-  ( E. x  e.  A  ( w  e.  z  /\  z  =  ( F `  x ) )  <->  ( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) )
1615exbii 1712 . . . . . . . . . . . . 13  |-  ( E. z E. x  e.  A  ( w  e.  z  /\  z  =  ( F `  x
) )  <->  E. z
( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) )
177, 14, 163bitr3ri 279 . . . . . . . . . . . 12  |-  ( E. z ( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) )  <->  E. x  e.  A  w  e.  ( F `  x ) )
18 df-rex 2777 . . . . . . . . . . . 12  |-  ( E. x  e.  A  w  e.  ( F `  x )  <->  E. x
( x  e.  A  /\  w  e.  ( F `  x )
) )
1917, 18bitr2i 253 . . . . . . . . . . 11  |-  ( E. x ( x  e.  A  /\  w  e.  ( F `  x
) )  <->  E. z
( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) )
2019a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( E. x ( x  e.  A  /\  w  e.  ( F `  x ) )  <->  E. z
( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) ) )
21 vex 3083 . . . . . . . . . . 11  |-  w  e. 
_V
22 eleq1 2495 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
y  e.  ( F `
 x )  <->  w  e.  ( F `  x ) ) )
2322anbi2d 708 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
( x  e.  A  /\  y  e.  ( F `  x )
)  <->  ( x  e.  A  /\  w  e.  ( F `  x
) ) ) )
2423exbidv 1762 . . . . . . . . . . 11  |-  ( y  =  w  ->  ( E. x ( x  e.  A  /\  y  e.  ( F `  x
) )  <->  E. x
( x  e.  A  /\  w  e.  ( F `  x )
) ) )
2521, 24elab 3217 . . . . . . . . . 10  |-  ( w  e.  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  <->  E. x
( x  e.  A  /\  w  e.  ( F `  x )
) )
26 eluniab 4230 . . . . . . . . . 10  |-  ( w  e.  U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  <->  E. z ( w  e.  z  /\  E. x  e.  A  z  =  ( F `  x ) ) )
2720, 25, 263bitr4g 291 . . . . . . . . 9  |-  ( ph  ->  ( w  e.  {
y  |  E. x
( x  e.  A  /\  y  e.  ( F `  x )
) }  <->  w  e.  U. { z  |  E. x  e.  A  z  =  ( F `  x ) } ) )
2827eqrdv 2419 . . . . . . . 8  |-  ( ph  ->  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  =  U. { z  |  E. x  e.  A  z  =  ( F `  x ) } )
2928eleq1d 2491 . . . . . . 7  |-  ( ph  ->  ( { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin 
<-> 
U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
3029adantr 466 . . . . . 6  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin 
<-> 
U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
31 fpwrelmapffslem.3 . . . . . . . . . . 11  |-  ( ph  ->  F : A --> ~P B
)
32 ffn 5746 . . . . . . . . . . 11  |-  ( F : A --> ~P B  ->  F  Fn  A )
33 fnrnfv 5927 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  ran  F  =  { z  |  E. x  e.  A  z  =  ( F `  x ) } )
3431, 32, 333syl 18 . . . . . . . . . 10  |-  ( ph  ->  ran  F  =  {
z  |  E. x  e.  A  z  =  ( F `  x ) } )
3534adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ran  F  =  { z  |  E. x  e.  A  z  =  ( F `  x ) } )
36 0ex 4556 . . . . . . . . . . 11  |-  (/)  e.  _V
3736a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  (/)  e.  _V )
38 fpwrelmapffslem.1 . . . . . . . . . . . 12  |-  A  e. 
_V
39 fex 6153 . . . . . . . . . . . 12  |-  ( ( F : A --> ~P B  /\  A  e.  _V )  ->  F  e.  _V )
4031, 38, 39sylancl 666 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  _V )
4140adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  F  e.  _V )
42 ffun 5748 . . . . . . . . . . . 12  |-  ( F : A --> ~P B  ->  Fun  F )
4331, 42syl 17 . . . . . . . . . . 11  |-  ( ph  ->  Fun  F )
4443adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  Fun  F )
45 opabdm 28221 . . . . . . . . . . . . . 14  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  ->  dom  R  =  { x  |  E. y ( x  e.  A  /\  y  e.  ( F `  x
) ) } )
461, 45syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  R  =  {
x  |  E. y
( x  e.  A  /\  y  e.  ( F `  x )
) } )
4738, 39mpan2 675 . . . . . . . . . . . . . . . . 17  |-  ( F : A --> ~P B  ->  F  e.  _V )
48 suppimacnv 6936 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  _V  /\  (/) 
e.  _V )  ->  ( F supp 
(/) )  =  ( `' F " ( _V 
\  { (/) } ) ) )
4936, 48mpan2 675 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  _V  ->  ( F supp 
(/) )  =  ( `' F " ( _V 
\  { (/) } ) ) )
5031, 47, 493syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F supp  (/) )  =  ( `' F "
( _V  \  { (/)
} ) ) )
5131feqmptd 5934 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
5251cnveqd 5029 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  `' F  =  `' ( x  e.  A  |->  ( F `  x
) ) )
5352imaeq1d 5186 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( `' F "
( _V  \  { (/)
} ) )  =  ( `' ( x  e.  A  |->  ( F `
 x ) )
" ( _V  \  { (/) } ) ) )
5450, 53eqtrd 2463 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F supp  (/) )  =  ( `' ( x  e.  A  |->  ( F `
 x ) )
" ( _V  \  { (/) } ) ) )
55 eqid 2422 . . . . . . . . . . . . . . . 16  |-  ( x  e.  A  |->  ( F `
 x ) )  =  ( x  e.  A  |->  ( F `  x ) )
5655mptpreima 5347 . . . . . . . . . . . . . . 15  |-  ( `' ( x  e.  A  |->  ( F `  x
) ) " ( _V  \  { (/) } ) )  =  { x  e.  A  |  ( F `  x )  e.  ( _V  \  { (/)
} ) }
5754, 56syl6eq 2479 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F supp  (/) )  =  { x  e.  A  |  ( F `  x )  e.  ( _V  \  { (/) } ) } )
58 suppvalfn 6932 . . . . . . . . . . . . . . . . 17  |-  ( ( F  Fn  A  /\  A  e.  _V  /\  (/)  e.  _V )  ->  ( F supp  (/) )  =  { x  e.  A  |  ( F `  x )  =/=  (/) } )
5938, 36, 58mp3an23 1352 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  A  ->  ( F supp 
(/) )  =  {
x  e.  A  | 
( F `  x
)  =/=  (/) } )
6031, 32, 593syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F supp  (/) )  =  { x  e.  A  |  ( F `  x )  =/=  (/) } )
61 n0 3771 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x )  =/=  (/)  <->  E. y  y  e.  ( F `  x
) )
6261a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  A  ->  (
( F `  x
)  =/=  (/)  <->  E. y 
y  e.  ( F `
 x ) ) )
6362rabbiia 3068 . . . . . . . . . . . . . . . 16  |-  { x  e.  A  |  ( F `  x )  =/=  (/) }  =  {
x  e.  A  |  E. y  y  e.  ( F `  x ) }
6463a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  { x  e.  A  |  ( F `  x )  =/=  (/) }  =  { x  e.  A  |  E. y  y  e.  ( F `  x
) } )
6560, 57, 643eqtr3d 2471 . . . . . . . . . . . . . 14  |-  ( ph  ->  { x  e.  A  |  ( F `  x )  e.  ( _V  \  { (/) } ) }  =  {
x  e.  A  |  E. y  y  e.  ( F `  x ) } )
66 df-rab 2780 . . . . . . . . . . . . . . . 16  |-  { x  e.  A  |  E. y  y  e.  ( F `  x ) }  =  { x  |  ( x  e.  A  /\  E. y 
y  e.  ( F `
 x ) ) }
67 19.42v 1827 . . . . . . . . . . . . . . . . 17  |-  ( E. y ( x  e.  A  /\  y  e.  ( F `  x
) )  <->  ( x  e.  A  /\  E. y 
y  e.  ( F `
 x ) ) )
6867abbii 2551 . . . . . . . . . . . . . . . 16  |-  { x  |  E. y ( x  e.  A  /\  y  e.  ( F `  x
) ) }  =  { x  |  (
x  e.  A  /\  E. y  y  e.  ( F `  x ) ) }
6966, 68eqtr4i 2454 . . . . . . . . . . . . . . 15  |-  { x  e.  A  |  E. y  y  e.  ( F `  x ) }  =  { x  |  E. y ( x  e.  A  /\  y  e.  ( F `  x
) ) }
7069a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  { x  e.  A  |  E. y  y  e.  ( F `  x
) }  =  {
x  |  E. y
( x  e.  A  /\  y  e.  ( F `  x )
) } )
7157, 65, 703eqtrd 2467 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F supp  (/) )  =  { x  |  E. y ( x  e.  A  /\  y  e.  ( F `  x
) ) } )
7246, 71eqtr4d 2466 . . . . . . . . . . . 12  |-  ( ph  ->  dom  R  =  ( F supp  (/) ) )
7372eleq1d 2491 . . . . . . . . . . 11  |-  ( ph  ->  ( dom  R  e. 
Fin 
<->  ( F supp  (/) )  e. 
Fin ) )
7473biimpa 486 . . . . . . . . . 10  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( F supp 
(/) )  e.  Fin )
7537, 41, 44, 74ffsrn 28320 . . . . . . . . 9  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ran  F  e.  Fin )
7635, 75eqeltrrd 2508 . . . . . . . 8  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin )
77 unifi 7872 . . . . . . . . 9  |-  ( ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin  /\  { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin )  ->  U. {
z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin )
7877ex 435 . . . . . . . 8  |-  ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin  ->  ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin  ->  U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
7976, 78syl 17 . . . . . . 7  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin  ->  U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
80 unifi3 28295 . . . . . . 7  |-  ( U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin  ->  { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin )
8179, 80impbid1 206 . . . . . 6  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin 
<-> 
U. { z  |  E. x  e.  A  z  =  ( F `  x ) }  e.  Fin ) )
8230, 81bitr4d 259 . . . . 5  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin 
<->  { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin ) )
83 opabrn 28222 . . . . . . . 8  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  ->  ran  R  =  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) } )
841, 83syl 17 . . . . . . 7  |-  ( ph  ->  ran  R  =  {
y  |  E. x
( x  e.  A  /\  y  e.  ( F `  x )
) } )
8584eleq1d 2491 . . . . . 6  |-  ( ph  ->  ( ran  R  e. 
Fin 
<->  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin ) )
8685adantr 466 . . . . 5  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( ran  R  e.  Fin  <->  { y  |  E. x ( x  e.  A  /\  y  e.  ( F `  x
) ) }  e.  Fin ) )
8735sseq1d 3491 . . . . 5  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( ran  F  C_  Fin  <->  { z  |  E. x  e.  A  z  =  ( F `  x ) }  C_  Fin ) )
8882, 86, 873bitr4d 288 . . . 4  |-  ( (
ph  /\  dom  R  e. 
Fin )  ->  ( ran  R  e.  Fin  <->  ran  F  C_  Fin ) )
8988pm5.32da 645 . . 3  |-  ( ph  ->  ( ( dom  R  e.  Fin  /\  ran  R  e.  Fin )  <->  ( dom  R  e.  Fin  /\  ran  F 
C_  Fin ) ) )
9073anbi1d 709 . . 3  |-  ( ph  ->  ( ( dom  R  e.  Fin  /\  ran  F  C_ 
Fin )  <->  ( ( F supp 
(/) )  e.  Fin  /\ 
ran  F  C_  Fin )
) )
9189, 90bitrd 256 . 2  |-  ( ph  ->  ( ( dom  R  e.  Fin  /\  ran  R  e.  Fin )  <->  ( ( F supp 
(/) )  e.  Fin  /\ 
ran  F  C_  Fin )
) )
92 ancom 451 . . 3  |-  ( ( ( F supp  (/) )  e. 
Fin  /\  ran  F  C_  Fin )  <->  ( ran  F  C_ 
Fin  /\  ( F supp  (/) )  e.  Fin )
)
9392a1i 11 . 2  |-  ( ph  ->  ( ( ( F supp  (/) )  e.  Fin  /\ 
ran  F  C_  Fin )  <->  ( ran  F  C_  Fin  /\  ( F supp  (/) )  e. 
Fin ) ) )
946, 91, 933bitrd 282 1  |-  ( ph  ->  ( R  e.  Fin  <->  ( ran  F  C_  Fin  /\  ( F supp 
(/) )  e.  Fin ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1657    e. wcel 1872   {cab 2407    =/= wne 2614   E.wrex 2772   {crab 2775   _Vcvv 3080    \ cdif 3433    C_ wss 3436   (/)c0 3761   ~Pcpw 3981   {csn 3998   U.cuni 4219   {copab 4481    |-> cmpt 4482   `'ccnv 4852   dom cdm 4853   ran crn 4854   "cima 4856   Rel wrel 4858   Fun wfun 5595    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6305   supp csupp 6925   Fincfn 7580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-ac2 8900
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-oadd 7197  df-er 7374  df-map 7485  df-en 7581  df-dom 7582  df-fin 7584  df-card 8381  df-acn 8384  df-ac 8554
This theorem is referenced by:  fpwrelmapffs  28325
  Copyright terms: Public domain W3C validator