Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodss Unicode version

Theorem fprodss 25227
Description: Change the index set to a subset in a finite sum. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodss.1  |-  ( ph  ->  A  C_  B )
fprodss.2  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
fprodss.3  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
1 )
fprodss.4  |-  ( ph  ->  B  e.  Fin )
Assertion
Ref Expression
fprodss  |-  ( ph  ->  prod_ k  e.  A C  =  prod_ k  e.  B C )
Distinct variable groups:    A, k    B, k    ph, k
Allowed substitution hint:    C( k)

Proof of Theorem fprodss
Dummy variables  f  m  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodss.1 . . 3  |-  ( ph  ->  A  C_  B )
2 sseq2 3330 . . . . 5  |-  ( B  =  (/)  ->  ( A 
C_  B  <->  A  C_  (/) ) )
3 ss0 3618 . . . . 5  |-  ( A 
C_  (/)  ->  A  =  (/) )
42, 3syl6bi 220 . . . 4  |-  ( B  =  (/)  ->  ( A 
C_  B  ->  A  =  (/) ) )
5 prodeq1 25188 . . . . . 6  |-  ( A  =  (/)  ->  prod_ k  e.  A C  =  prod_ k  e.  (/) C )
6 prodeq1 25188 . . . . . . 7  |-  ( B  =  (/)  ->  prod_ k  e.  B C  =  prod_ k  e.  (/) C )
76eqcomd 2409 . . . . . 6  |-  ( B  =  (/)  ->  prod_ k  e.  (/) C  =  prod_ k  e.  B C )
85, 7sylan9eq 2456 . . . . 5  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  prod_ k  e.  A C  = 
prod_ k  e.  B C )
98expcom 425 . . . 4  |-  ( B  =  (/)  ->  ( A  =  (/)  ->  prod_ k  e.  A C  =  prod_ k  e.  B C ) )
104, 9syld 42 . . 3  |-  ( B  =  (/)  ->  ( A 
C_  B  ->  prod_ k  e.  A C  = 
prod_ k  e.  B C ) )
111, 10syl5com 28 . 2  |-  ( ph  ->  ( B  =  (/)  ->  prod_ k  e.  A C  =  prod_ k  e.  B C ) )
12 cnvimass 5183 . . . . . . . . 9  |-  ( `' f " A ) 
C_  dom  f
13 simprr 734 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B )
14 f1of 5633 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f :
( 1 ... ( # `
 B ) ) --> B )
1513, 14syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) --> B )
16 fdm 5554 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  B
) ) --> B  ->  dom  f  =  (
1 ... ( # `  B
) ) )
1715, 16syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  dom  f  =  ( 1 ... ( # `  B
) ) )
1812, 17syl5sseq 3356 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  ( `' f " A
)  C_  ( 1 ... ( # `  B
) ) )
19 f1ofn 5634 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f  Fn  ( 1 ... ( # `
 B ) ) )
2013, 19syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f  Fn  ( 1 ... ( # `
 B ) ) )
21 elpreima 5809 . . . . . . . . . . . 12  |-  ( f  Fn  ( 1 ... ( # `  B
) )  ->  (
n  e.  ( `' f " A )  <-> 
( n  e.  ( 1 ... ( # `  B ) )  /\  ( f `  n
)  e.  A ) ) )
2220, 21syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
n  e.  ( `' f " A )  <-> 
( n  e.  ( 1 ... ( # `  B ) )  /\  ( f `  n
)  e.  A ) ) )
2315ffvelrnda 5829 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( 1 ... ( # `  B
) ) )  -> 
( f `  n
)  e.  B )
2423ex 424 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
n  e.  ( 1 ... ( # `  B
) )  ->  (
f `  n )  e.  B ) )
2524adantrd 455 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
( n  e.  ( 1 ... ( # `  B ) )  /\  ( f `  n
)  e.  A )  ->  ( f `  n )  e.  B
) )
2622, 25sylbid 207 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
n  e.  ( `' f " A )  ->  ( f `  n )  e.  B
) )
2726imp 419 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  ->  ( f `  n )  e.  B
)
28 fprodss.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2928ex 424 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  A  ->  C  e.  CC ) )
3029adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  ->  C  e.  CC )
)
31 eldif 3290 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( B  \  A )  <->  ( k  e.  B  /\  -.  k  e.  A ) )
32 fprodss.3 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
1 )
33 ax-1cn 9004 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
3432, 33syl6eqel 2492 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  CC )
3531, 34sylan2br 463 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  ->  C  e.  CC )
3635expr 599 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  ( -.  k  e.  A  ->  C  e.  CC ) )
3730, 36pm2.61d 152 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
3837adantlr 696 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  k  e.  B )  ->  C  e.  CC )
39 eqid 2404 . . . . . . . . . . 11  |-  ( k  e.  B  |->  C )  =  ( k  e.  B  |->  C )
4038, 39fmptd 5852 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
k  e.  B  |->  C ) : B --> CC )
4140ffvelrnda 5829 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  ( f `  n
)  e.  B )  ->  ( ( k  e.  B  |->  C ) `
 ( f `  n ) )  e.  CC )
4227, 41syldan 457 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  ->  ( ( k  e.  B  |->  C ) `
 ( f `  n ) )  e.  CC )
43 eqid 2404 . . . . . . . . 9  |-  ( ZZ>= ` 
1 )  =  (
ZZ>= `  1 )
44 simprl 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  ( # `
 B )  e.  NN )
45 nnuz 10477 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
4644, 45syl6eleq 2494 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  ( # `
 B )  e.  ( ZZ>= `  1 )
)
47 ssid 3327 . . . . . . . . . 10  |-  ( 1 ... ( # `  B
) )  C_  (
1 ... ( # `  B
) )
4847a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
1 ... ( # `  B
) )  C_  (
1 ... ( # `  B
) ) )
4943, 46, 48fprodntriv 25221 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  E. m  e.  ( ZZ>= `  1 ) E. y ( y  =/=  0  /\  seq  m
(  x.  ,  ( n  e.  ( ZZ>= ` 
1 )  |->  if ( n  e.  ( 1 ... ( # `  B
) ) ,  ( ( k  e.  B  |->  C ) `  (
f `  n )
) ,  1 ) ) )  ~~>  y ) )
50 eldifi 3429 . . . . . . . . . . . 12  |-  ( n  e.  ( ( 1 ... ( # `  B
) )  \  ( `' f " A
) )  ->  n  e.  ( 1 ... ( # `
 B ) ) )
5150, 23sylan2 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( f `  n
)  e.  B )
52 eldifn 3430 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( 1 ... ( # `  B
) )  \  ( `' f " A
) )  ->  -.  n  e.  ( `' f " A ) )
5352adantl 453 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  ->  -.  n  e.  ( `' f " A
) )
5422adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( n  e.  ( `' f " A
)  <->  ( n  e.  ( 1 ... ( # `
 B ) )  /\  ( f `  n )  e.  A
) ) )
5550adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  ->  n  e.  ( 1 ... ( # `  B
) ) )
5655biantrurd 495 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( f `  n )  e.  A  <->  ( n  e.  ( 1 ... ( # `  B
) )  /\  (
f `  n )  e.  A ) ) )
5754, 56bitr4d 248 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( n  e.  ( `' f " A
)  <->  ( f `  n )  e.  A
) )
5853, 57mtbid 292 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  ->  -.  ( f `  n
)  e.  A )
5951, 58eldifd 3291 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( f `  n
)  e.  ( B 
\  A ) )
60 difss 3434 . . . . . . . . . . . . 13  |-  ( B 
\  A )  C_  B
61 resmpt 5150 . . . . . . . . . . . . 13  |-  ( ( B  \  A ) 
C_  B  ->  (
( k  e.  B  |->  C )  |`  ( B  \  A ) )  =  ( k  e.  ( B  \  A
)  |->  C ) )
6260, 61ax-mp 8 . . . . . . . . . . . 12  |-  ( ( k  e.  B  |->  C )  |`  ( B  \  A ) )  =  ( k  e.  ( B  \  A ) 
|->  C )
6362fveq1i 5688 . . . . . . . . . . 11  |-  ( ( ( k  e.  B  |->  C )  |`  ( B  \  A ) ) `
 ( f `  n ) )  =  ( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )
64 fvres 5704 . . . . . . . . . . 11  |-  ( ( f `  n )  e.  ( B  \  A )  ->  (
( ( k  e.  B  |->  C )  |`  ( B  \  A ) ) `  ( f `
 n ) )  =  ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
6563, 64syl5eqr 2450 . . . . . . . . . 10  |-  ( ( f `  n )  e.  ( B  \  A )  ->  (
( k  e.  ( B  \  A ) 
|->  C ) `  (
f `  n )
)  =  ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
6659, 65syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )  =  ( ( k  e.  B  |->  C ) `  (
f `  n )
) )
67 1ex 9042 . . . . . . . . . . . . . . 15  |-  1  e.  _V
6867elsnc2 3803 . . . . . . . . . . . . . 14  |-  ( C  e.  { 1 }  <-> 
C  =  1 )
6932, 68sylibr 204 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  { 1 } )
70 eqid 2404 . . . . . . . . . . . . 13  |-  ( k  e.  ( B  \  A )  |->  C )  =  ( k  e.  ( B  \  A
)  |->  C )
7169, 70fmptd 5852 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( B  \  A ) 
|->  C ) : ( B  \  A ) --> { 1 } )
7271ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( k  e.  ( B  \  A ) 
|->  C ) : ( B  \  A ) --> { 1 } )
7372, 59ffvelrnd 5830 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )  e.  {
1 } )
74 elsni 3798 . . . . . . . . . 10  |-  ( ( ( k  e.  ( B  \  A ) 
|->  C ) `  (
f `  n )
)  e.  { 1 }  ->  ( (
k  e.  ( B 
\  A )  |->  C ) `  ( f `
 n ) )  =  1 )
7573, 74syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )  =  1 )
7666, 75eqtr3d 2438 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  B  |->  C ) `  ( f `  n
) )  =  1 )
77 fzssuz 11049 . . . . . . . . 9  |-  ( 1 ... ( # `  B
) )  C_  ( ZZ>=
`  1 )
7877a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
1 ... ( # `  B
) )  C_  ( ZZ>=
`  1 ) )
7918, 42, 49, 76, 78prodss 25226 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ n  e.  ( `' f
" A ) ( ( k  e.  B  |->  C ) `  (
f `  n )
)  =  prod_ n  e.  ( 1 ... ( # `
 B ) ) ( ( k  e.  B  |->  C ) `  ( f `  n
) ) )
801adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  A  C_  B )
81 resmpt 5150 . . . . . . . . . . . 12  |-  ( A 
C_  B  ->  (
( k  e.  B  |->  C )  |`  A )  =  ( k  e.  A  |->  C ) )
8280, 81syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
( k  e.  B  |->  C )  |`  A )  =  ( k  e.  A  |->  C ) )
8382fveq1d 5689 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  A  |->  C ) `  m ) )
84 fvres 5704 . . . . . . . . . 10  |-  ( m  e.  A  ->  (
( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  B  |->  C ) `  m ) )
8583, 84sylan9req 2457 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  C ) `  m )  =  ( ( k  e.  B  |->  C ) `  m
) )
8685prodeq2dv 25202 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ m  e.  A ( ( k  e.  A  |->  C ) `  m )  =  prod_ m  e.  A
( ( k  e.  B  |->  C ) `  m ) )
87 fveq2 5687 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  B  |->  C ) `  m
)  =  ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
88 fzfid 11267 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
1 ... ( # `  B
) )  e.  Fin )
8988, 15fisuppfi 14728 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  ( `' f " A
)  e.  Fin )
90 f1of1 5632 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f :
( 1 ... ( # `
 B ) )
-1-1-> B )
9113, 90syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) -1-1-> B )
92 f1ores 5648 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  B
) ) -1-1-> B  /\  ( `' f " A
)  C_  ( 1 ... ( # `  B
) ) )  -> 
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) ) )
9391, 18, 92syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
f  |`  ( `' f
" A ) ) : ( `' f
" A ) -1-1-onto-> ( f
" ( `' f
" A ) ) )
94 f1ofo 5640 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f :
( 1 ... ( # `
 B ) )
-onto-> B )
9513, 94syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) -onto-> B )
96 foimacnv 5651 . . . . . . . . . . . 12  |-  ( ( f : ( 1 ... ( # `  B
) ) -onto-> B  /\  A  C_  B )  -> 
( f " ( `' f " A
) )  =  A )
9795, 80, 96syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
f " ( `' f " A ) )  =  A )
98 f1oeq3 5626 . . . . . . . . . . 11  |-  ( ( f " ( `' f " A ) )  =  A  -> 
( ( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) )  <->  ( f  |`  ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) )
9997, 98syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) )  <->  ( f  |`  ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) )
10093, 99mpbid 202 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
f  |`  ( `' f
" A ) ) : ( `' f
" A ) -1-1-onto-> A )
101 fvres 5704 . . . . . . . . . 10  |-  ( n  e.  ( `' f
" A )  -> 
( ( f  |`  ( `' f " A
) ) `  n
)  =  ( f `
 n ) )
102101adantl 453 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  ->  ( ( f  |`  ( `' f " A ) ) `  n )  =  ( f `  n ) )
10380sselda 3308 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  m  e.  B )
10440ffvelrnda 5829 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  B )  ->  ( ( k  e.  B  |->  C ) `  m )  e.  CC )
105103, 104syldan 457 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( k  e.  B  |->  C ) `  m )  e.  CC )
10687, 89, 100, 102, 105fprodf1o 25225 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ m  e.  A ( ( k  e.  B  |->  C ) `  m )  =  prod_ n  e.  ( `' f " A
) ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
10786, 106eqtrd 2436 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ m  e.  A ( ( k  e.  A  |->  C ) `  m )  =  prod_ n  e.  ( `' f " A
) ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
108 eqidd 2405 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( 1 ... ( # `  B
) ) )  -> 
( f `  n
)  =  ( f `
 n ) )
10987, 88, 13, 108, 104fprodf1o 25225 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ m  e.  B ( ( k  e.  B  |->  C ) `  m )  =  prod_ n  e.  ( 1 ... ( # `  B ) ) ( ( k  e.  B  |->  C ) `  (
f `  n )
) )
11079, 107, 1093eqtr4d 2446 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ m  e.  A ( ( k  e.  A  |->  C ) `  m )  =  prod_ m  e.  B
( ( k  e.  B  |->  C ) `  m ) )
111 prodfc 25224 . . . . . 6  |-  prod_ m  e.  A ( ( k  e.  A  |->  C ) `
 m )  = 
prod_ k  e.  A C
112 prodfc 25224 . . . . . 6  |-  prod_ m  e.  B ( ( k  e.  B  |->  C ) `
 m )  = 
prod_ k  e.  B C
113110, 111, 1123eqtr3g 2459 . . . . 5  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ k  e.  A C  = 
prod_ k  e.  B C )
114113expr 599 . . . 4  |-  ( (
ph  /\  ( # `  B
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B  ->  prod_ k  e.  A C  =  prod_ k  e.  B C ) )
115114exlimdv 1643 . . 3  |-  ( (
ph  /\  ( # `  B
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  prod_ k  e.  A C  =  prod_ k  e.  B C ) )
116115expimpd 587 . 2  |-  ( ph  ->  ( ( ( # `  B )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B )  ->  prod_ k  e.  A C  =  prod_ k  e.  B C ) )
117 fprodss.4 . . 3  |-  ( ph  ->  B  e.  Fin )
118 fz1f1o 12459 . . 3  |-  ( B  e.  Fin  ->  ( B  =  (/)  \/  (
( # `  B )  e.  NN  /\  E. f  f : ( 1 ... ( # `  B ) ) -1-1-onto-> B ) ) )
119117, 118syl 16 . 2  |-  ( ph  ->  ( B  =  (/)  \/  ( ( # `  B
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  B ) ) -1-1-onto-> B ) ) )
12011, 116, 119mpjaod 371 1  |-  ( ph  ->  prod_ k  e.  A C  =  prod_ k  e.  B C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721    \ cdif 3277    C_ wss 3280   (/)c0 3588   {csn 3774    e. cmpt 4226   `'ccnv 4836   dom cdm 4837    |` cres 4839   "cima 4840    Fn wfn 5408   -->wf 5409   -1-1->wf1 5410   -onto->wfo 5411   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040   Fincfn 7068   CCcc 8944   1c1 8947   NNcn 9956   ZZ>=cuz 10444   ...cfz 10999   #chash 11573   prod_cprod 25184
This theorem is referenced by:  fprodsplit  25242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-prod 25185
  Copyright terms: Public domain W3C validator