MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodss Structured version   Visualization version   Unicode version

Theorem fprodss 14002
Description: Change the index set to a subset in a finite sum. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodss.1  |-  ( ph  ->  A  C_  B )
fprodss.2  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
fprodss.3  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
1 )
fprodss.4  |-  ( ph  ->  B  e.  Fin )
Assertion
Ref Expression
fprodss  |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
Distinct variable groups:    A, k    B, k    ph, k
Allowed substitution hint:    C( k)

Proof of Theorem fprodss
Dummy variables  f  m  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodss.1 . . 3  |-  ( ph  ->  A  C_  B )
2 sseq2 3454 . . . . 5  |-  ( B  =  (/)  ->  ( A 
C_  B  <->  A  C_  (/) ) )
3 ss0 3765 . . . . 5  |-  ( A 
C_  (/)  ->  A  =  (/) )
42, 3syl6bi 232 . . . 4  |-  ( B  =  (/)  ->  ( A 
C_  B  ->  A  =  (/) ) )
5 prodeq1 13963 . . . . . 6  |-  ( A  =  (/)  ->  prod_ k  e.  A  C  =  prod_ k  e.  (/)  C )
6 prodeq1 13963 . . . . . . 7  |-  ( B  =  (/)  ->  prod_ k  e.  B  C  =  prod_ k  e.  (/)  C )
76eqcomd 2457 . . . . . 6  |-  ( B  =  (/)  ->  prod_ k  e.  (/)  C  =  prod_ k  e.  B  C )
85, 7sylan9eq 2505 . . . . 5  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
98expcom 437 . . . 4  |-  ( B  =  (/)  ->  ( A  =  (/)  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C
) )
104, 9syld 45 . . 3  |-  ( B  =  (/)  ->  ( A 
C_  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C ) )
111, 10syl5com 31 . 2  |-  ( ph  ->  ( B  =  (/)  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C ) )
12 cnvimass 5188 . . . . . . . . 9  |-  ( `' f " A ) 
C_  dom  f
13 simprr 766 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B )
14 f1of 5814 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f :
( 1 ... ( # `
 B ) ) --> B )
1513, 14syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) --> B )
16 fdm 5733 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  B
) ) --> B  ->  dom  f  =  (
1 ... ( # `  B
) ) )
1715, 16syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  dom  f  =  ( 1 ... ( # `  B
) ) )
1812, 17syl5sseq 3480 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  ( `' f " A
)  C_  ( 1 ... ( # `  B
) ) )
19 f1ofn 5815 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f  Fn  ( 1 ... ( # `
 B ) ) )
2013, 19syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f  Fn  ( 1 ... ( # `
 B ) ) )
21 elpreima 6002 . . . . . . . . . . . 12  |-  ( f  Fn  ( 1 ... ( # `  B
) )  ->  (
n  e.  ( `' f " A )  <-> 
( n  e.  ( 1 ... ( # `  B ) )  /\  ( f `  n
)  e.  A ) ) )
2220, 21syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
n  e.  ( `' f " A )  <-> 
( n  e.  ( 1 ... ( # `  B ) )  /\  ( f `  n
)  e.  A ) ) )
2315ffvelrnda 6022 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( 1 ... ( # `  B
) ) )  -> 
( f `  n
)  e.  B )
2423ex 436 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
n  e.  ( 1 ... ( # `  B
) )  ->  (
f `  n )  e.  B ) )
2524adantrd 470 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
( n  e.  ( 1 ... ( # `  B ) )  /\  ( f `  n
)  e.  A )  ->  ( f `  n )  e.  B
) )
2622, 25sylbid 219 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
n  e.  ( `' f " A )  ->  ( f `  n )  e.  B
) )
2726imp 431 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  ->  ( f `  n )  e.  B
)
28 fprodss.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2928ex 436 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  A  ->  C  e.  CC ) )
3029adantr 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  ->  C  e.  CC )
)
31 eldif 3414 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( B  \  A )  <->  ( k  e.  B  /\  -.  k  e.  A ) )
32 fprodss.3 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
1 )
33 ax-1cn 9597 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
3432, 33syl6eqel 2537 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  CC )
3531, 34sylan2br 479 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  ->  C  e.  CC )
3635expr 620 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  ( -.  k  e.  A  ->  C  e.  CC ) )
3730, 36pm2.61d 162 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
3837adantlr 721 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  k  e.  B )  ->  C  e.  CC )
39 eqid 2451 . . . . . . . . . . 11  |-  ( k  e.  B  |->  C )  =  ( k  e.  B  |->  C )
4038, 39fmptd 6046 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
k  e.  B  |->  C ) : B --> CC )
4140ffvelrnda 6022 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  ( f `  n
)  e.  B )  ->  ( ( k  e.  B  |->  C ) `
 ( f `  n ) )  e.  CC )
4227, 41syldan 473 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  ->  ( ( k  e.  B  |->  C ) `
 ( f `  n ) )  e.  CC )
43 eqid 2451 . . . . . . . . 9  |-  ( ZZ>= ` 
1 )  =  (
ZZ>= `  1 )
44 simprl 764 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  ( # `
 B )  e.  NN )
45 nnuz 11194 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
4644, 45syl6eleq 2539 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  ( # `
 B )  e.  ( ZZ>= `  1 )
)
47 ssid 3451 . . . . . . . . . 10  |-  ( 1 ... ( # `  B
) )  C_  (
1 ... ( # `  B
) )
4847a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
1 ... ( # `  B
) )  C_  (
1 ... ( # `  B
) ) )
4943, 46, 48fprodntriv 13996 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  E. m  e.  ( ZZ>= `  1 ) E. y ( y  =/=  0  /\  seq m
(  x.  ,  ( n  e.  ( ZZ>= ` 
1 )  |->  if ( n  e.  ( 1 ... ( # `  B
) ) ,  ( ( k  e.  B  |->  C ) `  (
f `  n )
) ,  1 ) ) )  ~~>  y ) )
50 eldifi 3555 . . . . . . . . . . . 12  |-  ( n  e.  ( ( 1 ... ( # `  B
) )  \  ( `' f " A
) )  ->  n  e.  ( 1 ... ( # `
 B ) ) )
5150, 23sylan2 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( f `  n
)  e.  B )
52 eldifn 3556 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( 1 ... ( # `  B
) )  \  ( `' f " A
) )  ->  -.  n  e.  ( `' f " A ) )
5352adantl 468 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  ->  -.  n  e.  ( `' f " A
) )
5422adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( n  e.  ( `' f " A
)  <->  ( n  e.  ( 1 ... ( # `
 B ) )  /\  ( f `  n )  e.  A
) ) )
5550adantl 468 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  ->  n  e.  ( 1 ... ( # `  B
) ) )
5655biantrurd 511 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( f `  n )  e.  A  <->  ( n  e.  ( 1 ... ( # `  B
) )  /\  (
f `  n )  e.  A ) ) )
5754, 56bitr4d 260 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( n  e.  ( `' f " A
)  <->  ( f `  n )  e.  A
) )
5853, 57mtbid 302 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  ->  -.  ( f `  n
)  e.  A )
5951, 58eldifd 3415 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( f `  n
)  e.  ( B 
\  A ) )
60 difss 3560 . . . . . . . . . . . . 13  |-  ( B 
\  A )  C_  B
61 resmpt 5154 . . . . . . . . . . . . 13  |-  ( ( B  \  A ) 
C_  B  ->  (
( k  e.  B  |->  C )  |`  ( B  \  A ) )  =  ( k  e.  ( B  \  A
)  |->  C ) )
6260, 61ax-mp 5 . . . . . . . . . . . 12  |-  ( ( k  e.  B  |->  C )  |`  ( B  \  A ) )  =  ( k  e.  ( B  \  A ) 
|->  C )
6362fveq1i 5866 . . . . . . . . . . 11  |-  ( ( ( k  e.  B  |->  C )  |`  ( B  \  A ) ) `
 ( f `  n ) )  =  ( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )
64 fvres 5879 . . . . . . . . . . 11  |-  ( ( f `  n )  e.  ( B  \  A )  ->  (
( ( k  e.  B  |->  C )  |`  ( B  \  A ) ) `  ( f `
 n ) )  =  ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
6563, 64syl5eqr 2499 . . . . . . . . . 10  |-  ( ( f `  n )  e.  ( B  \  A )  ->  (
( k  e.  ( B  \  A ) 
|->  C ) `  (
f `  n )
)  =  ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
6659, 65syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )  =  ( ( k  e.  B  |->  C ) `  (
f `  n )
) )
67 1ex 9638 . . . . . . . . . . . . . . 15  |-  1  e.  _V
6867elsnc2 3999 . . . . . . . . . . . . . 14  |-  ( C  e.  { 1 }  <-> 
C  =  1 )
6932, 68sylibr 216 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  { 1 } )
70 eqid 2451 . . . . . . . . . . . . 13  |-  ( k  e.  ( B  \  A )  |->  C )  =  ( k  e.  ( B  \  A
)  |->  C )
7169, 70fmptd 6046 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( B  \  A ) 
|->  C ) : ( B  \  A ) --> { 1 } )
7271ad2antrr 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( k  e.  ( B  \  A ) 
|->  C ) : ( B  \  A ) --> { 1 } )
7372, 59ffvelrnd 6023 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )  e.  {
1 } )
74 elsni 3993 . . . . . . . . . 10  |-  ( ( ( k  e.  ( B  \  A ) 
|->  C ) `  (
f `  n )
)  e.  { 1 }  ->  ( (
k  e.  ( B 
\  A )  |->  C ) `  ( f `
 n ) )  =  1 )
7573, 74syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )  =  1 )
7666, 75eqtr3d 2487 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( (
1 ... ( # `  B
) )  \  ( `' f " A
) ) )  -> 
( ( k  e.  B  |->  C ) `  ( f `  n
) )  =  1 )
77 fzssuz 11839 . . . . . . . . 9  |-  ( 1 ... ( # `  B
) )  C_  ( ZZ>=
`  1 )
7877a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
1 ... ( # `  B
) )  C_  ( ZZ>=
`  1 ) )
7918, 42, 49, 76, 78prodss 14001 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ n  e.  ( `' f
" A ) ( ( k  e.  B  |->  C ) `  (
f `  n )
)  =  prod_ n  e.  ( 1 ... ( # `
 B ) ) ( ( k  e.  B  |->  C ) `  ( f `  n
) ) )
801adantr 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  A  C_  B )
8180resmptd 5156 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
( k  e.  B  |->  C )  |`  A )  =  ( k  e.  A  |->  C ) )
8281fveq1d 5867 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  A  |->  C ) `  m ) )
83 fvres 5879 . . . . . . . . . 10  |-  ( m  e.  A  ->  (
( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  B  |->  C ) `  m ) )
8482, 83sylan9req 2506 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  C ) `  m )  =  ( ( k  e.  B  |->  C ) `  m
) )
8584prodeq2dv 13977 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  prod_ m  e.  A  ( ( k  e.  B  |->  C ) `  m ) )
86 fveq2 5865 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  B  |->  C ) `  m
)  =  ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
87 fzfid 12186 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
1 ... ( # `  B
) )  e.  Fin )
8887, 15fisuppfi 7891 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  ( `' f " A
)  e.  Fin )
89 f1of1 5813 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f :
( 1 ... ( # `
 B ) )
-1-1-> B )
9013, 89syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) -1-1-> B )
91 f1ores 5828 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  B
) ) -1-1-> B  /\  ( `' f " A
)  C_  ( 1 ... ( # `  B
) ) )  -> 
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) ) )
9290, 18, 91syl2anc 667 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
f  |`  ( `' f
" A ) ) : ( `' f
" A ) -1-1-onto-> ( f
" ( `' f
" A ) ) )
93 f1ofo 5821 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  f :
( 1 ... ( # `
 B ) )
-onto-> B )
9413, 93syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  f : ( 1 ... ( # `  B
) ) -onto-> B )
95 foimacnv 5831 . . . . . . . . . . . 12  |-  ( ( f : ( 1 ... ( # `  B
) ) -onto-> B  /\  A  C_  B )  -> 
( f " ( `' f " A
) )  =  A )
9694, 80, 95syl2anc 667 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
f " ( `' f " A ) )  =  A )
97 f1oeq3 5807 . . . . . . . . . . 11  |-  ( ( f " ( `' f " A ) )  =  A  -> 
( ( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) )  <->  ( f  |`  ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) )
9896, 97syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) )  <->  ( f  |`  ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) )
9992, 98mpbid 214 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  (
f  |`  ( `' f
" A ) ) : ( `' f
" A ) -1-1-onto-> A )
100 fvres 5879 . . . . . . . . . 10  |-  ( n  e.  ( `' f
" A )  -> 
( ( f  |`  ( `' f " A
) ) `  n
)  =  ( f `
 n ) )
101100adantl 468 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  ->  ( ( f  |`  ( `' f " A ) ) `  n )  =  ( f `  n ) )
10280sselda 3432 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  m  e.  B )
10340ffvelrnda 6022 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  B )  ->  ( ( k  e.  B  |->  C ) `  m )  e.  CC )
104102, 103syldan 473 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  ( ( k  e.  B  |->  C ) `  m )  e.  CC )
10586, 88, 99, 101, 104fprodf1o 14000 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ m  e.  A  ( ( k  e.  B  |->  C ) `  m )  =  prod_ n  e.  ( `' f " A
) ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
10685, 105eqtrd 2485 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  prod_ n  e.  ( `' f " A
) ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
107 eqidd 2452 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  B )  e.  NN  /\  f : ( 1 ... ( # `  B
) ) -1-1-onto-> B ) )  /\  n  e.  ( 1 ... ( # `  B
) ) )  -> 
( f `  n
)  =  ( f `
 n ) )
10886, 87, 13, 107, 103fprodf1o 14000 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ m  e.  B  ( ( k  e.  B  |->  C ) `  m )  =  prod_ n  e.  ( 1 ... ( # `  B ) ) ( ( k  e.  B  |->  C ) `  (
f `  n )
) )
10979, 106, 1083eqtr4d 2495 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  prod_ m  e.  B  ( ( k  e.  B  |->  C ) `  m ) )
110 prodfc 13999 . . . . . 6  |-  prod_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  prod_ k  e.  A  C
111 prodfc 13999 . . . . . 6  |-  prod_ m  e.  B  ( (
k  e.  B  |->  C ) `  m )  =  prod_ k  e.  B  C
112109, 110, 1113eqtr3g 2508 . . . . 5  |-  ( (
ph  /\  ( ( # `
 B )  e.  NN  /\  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
113112expr 620 . . . 4  |-  ( (
ph  /\  ( # `  B
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C ) )
114113exlimdv 1779 . . 3  |-  ( (
ph  /\  ( # `  B
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C ) )
115114expimpd 608 . 2  |-  ( ph  ->  ( ( ( # `  B )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B )  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C ) )
116 fprodss.4 . . 3  |-  ( ph  ->  B  e.  Fin )
117 fz1f1o 13776 . . 3  |-  ( B  e.  Fin  ->  ( B  =  (/)  \/  (
( # `  B )  e.  NN  /\  E. f  f : ( 1 ... ( # `  B ) ) -1-1-onto-> B ) ) )
118116, 117syl 17 . 2  |-  ( ph  ->  ( B  =  (/)  \/  ( ( # `  B
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  B ) ) -1-1-onto-> B ) ) )
11911, 115, 118mpjaod 383 1  |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    = wceq 1444   E.wex 1663    e. wcel 1887    \ cdif 3401    C_ wss 3404   (/)c0 3731   {csn 3968    |-> cmpt 4461   `'ccnv 4833   dom cdm 4834    |` cres 4836   "cima 4837    Fn wfn 5577   -->wf 5578   -1-1->wf1 5579   -onto->wfo 5580   -1-1-onto->wf1o 5581   ` cfv 5582  (class class class)co 6290   Fincfn 7569   CCcc 9537   1c1 9540   NNcn 10609   ZZ>=cuz 11159   ...cfz 11784   #chash 12515   prod_cprod 13959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-sup 7956  df-oi 8025  df-card 8373  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11785  df-fzo 11916  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13552  df-prod 13960
This theorem is referenced by:  fprodsplit  14020
  Copyright terms: Public domain W3C validator